ARCHITECTURAL FRAMEWORK
FOR ROLE-PLAYING GAMES

PROJECT ID: 2658

BY

LUQMAN HAKIM BIN BASIR

1221303485

PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENT FOR THE DEGREE OF
BACHELOR OF COMPUTER SCIENCE (HONOURS)

(SOFTWARE ENGINEERING)

in the

Faculty of Computing and Informatics

MULTIMEDIA UNIVERSITY

MALAYSIA

MAY 2024

© 2024 Universiti Telekom Sdn. Bhd. ALL RIGHTS RESERVED.

Copyright of this report belongs to Universiti Telekom Sdn. Bhd. as qualified by
Regulation 7.2 (c) of the Multimedia University Intellectual Property and
Commercialisation Policy. No part of this publication may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Universiti Telekom Sdn. Bhd. Due
acknowledgement shall always be made of the use of any material contained in, or

derived from, this report.

il

DECLARATION

I hereby declare that the work has been done by myself and no portion of the work
contained in this report has been submitted in support of any application for any

other degree or qualification of this or any other university or institution of learning.

)
—7
Name of candidate: LUQMAN HAKIM BIN BASIR
Faculty of Computing & Informatics
Multimedia University

Date: 27: 05: 2024

il

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have contributed to the
successful completion of my Final Year Project, "Architectural Framework for Role-

Playing Games."

I extend my heartfelt thanks to my project supervisor, Dr Wong Ya Ping, for
his invaluable guidance, and support throughout the entire research and development
process. Their insights and constructive feedback have been instrumental in shaping
the direction of this project. Thus, Warm thanks to the Multimedia University for
providing the necessary resources and a conducive environment for the development

of this project.

Special appreciation goes to the RPG enthusiasts and communities that have
been a wellspring of inspiration. Their passion for storytelling and game design has
been a driving force, and I am honoured to contribute to the shared world of role-

playing games.

Furthermore, to my family and friends, thank you for your unwavering
support and understanding as I delved into the intricacies of creating an architectural
framework for RPGs. Your encouragement has been instrumental in this journey.

Finally, I would like to thank God Almighty for providing me guidance to success.

Thank you.
LUQMAN HAKIM BIN BASIR
MULTIMEDIA UNIVERSITY

31/1/2024

v

ABSTRACT

This project aims to develop a custom architectural framework for Role-
Playing Games (RPGs) using Unreal Engine 5, emphasizing scalability,
maintainability, and performance. The framework addresses the significant challenge
faced by game developers of constructing complex RPG systems from scratch. Many
developers face challenges in implementing efficient and maintainable systems that
ensure optimal performance. The proposed solution alleviates these challenges by
providing pre-built, highly customizable systems that streamline the development
process. Leveraging Unreal Engine 5's Blueprint visual scripting, the framework
makes game development accessible to developers with varying levels of coding

expertise.

The primary problem addressed in this project is the significant time and
resource investment required by game developers to create RPG systems from the
ground up in Unreal Engine 5. The developed framework integrates key RPG
components: Character System, Combat System, Quest System, and Item System.
These components are modular and can be customized to fit various RPG styles,

providing a robust and versatile foundation for game development.

The project's objectives included conducting a detailed analysis of challenges
related to scalability, maintainability, and performance in RPGs; developing a
custom-made architectural framework prioritizing features such as Character
Designer, Quest Generator, Item Creator, and Combat Creator; and creating a
playable RPG prototype to showcase the framework's functionality and user
experience. Comprehensive research was conducted to identify best practices and
design patterns, which were then applied to develop a robust architectural
framework. The successful implementation and integration of all four systems using

Unreal Engine 5 Blueprints ensured ease of use and high customization.

The testing phase involved functional, integration, and usability testing. The
framework was evaluated for character stat calculations, leveling mechanics, user
interface accuracy, enemy Al behavior, quest functionalities, and item equipping
mechanics. Integration tests ensured seamless interaction between systems, while
usability tests validated the framework's intuitiveness from a developer's perspective.
The results indicated high functionality with minor bugs that were systematically
addressed. The framework exhibited excellent performance and scalability, though

some areas such as attack tracing and combo handling require further refinement.

This project provided valuable insights into game development using Unreal
Engine 5, highlighting the importance of time management, logical problem-solving,
and continuous learning. The framework demonstrated significant potential for
improving RPG development efficiency. Future work will focus on refining combat
mechanics, adding more character and item variations, implementing advanced
animations, and enhancing overall user experience. The framework's
commercialization on the Unreal Engine Marketplace is planned, aiming to provide

game developers with a powerful tool to expedite their RPG projects.

In summary, this project successfully developed a comprehensive
architectural framework for RPGs, addressing critical challenges and offering a
valuable resource for game developers. The framework's modular design and ease of
use promise significant contributions to the field of RPG development, paving the

way for future enhancements and broader adoption.

vi

TABLE OF CONTENTS

DECLARATION........otiiiteitecte ettt e site e teesteesieesseseesssaesssneesssaessseessssessnsessnseeenns iii
ACKNOWLEDGMENTS ..ottt ettt ettt ettt ste e st e e saeesnseessneennsee s v
ABSTRACT ...ttt e e et e e e ta e e e s ataee e etsaeeeessaaeeesssaeeeensnseeas v
TABLE OF CONTENTSooiioieeieee ettt stee et ve e st ste e st e enaesnnaesnne s vii
LIST OF TABLESttt ettt e e et e e e eatae e e etba e e s esnaee e esnnee s X
LIST OF FIGURES. ... oottt ettt tte e ve e saee e ste e seseeesaeesnsassnsaeenes xi
LIST OF ABBREAVIATION......ccoiiiiiieeiie ettt eree et e st e e e e e esraa e e xii
CHAPTER 1 INTRODUCTIONociiiiiiiieeiiieeciiee ettt eree e eevree e evae e e eanee s 1
1.1 Problem STatemeENnt........ooci it e e 1
1.1.1 Problem 1dentificationccoceiieiiiiii e e 1
1.0.2 Personal INTEIESt.....uuii ittt e e e s s e s be e et bae e e s saanaes 2

A S oY =Tt @ o T =Tt V7RSSR 2
1.3 DElIVEIADIES. ..t s e st e e 3
1.3.1 Custom Architectural Framework for RPGs with Unreal Enginecccccouveeuneenne 3
1.3.2 Playable RPG ProtOtYPe ...ceiiiciiiececiiie ettt et te s etttee s etee e s e avae e e tbae e e s senaeee e eannns 4
1.3.3 EVAlU@tion REPOIt....ciiiiiiiie i ctiis ettt et e s et ae e s e bt be e e s aae e s saaeees 4

R olo Y o T D 1=Y TV 4o o SRS 5
1.4.1 SyStEM BOUNGAIIES..cceiiiiiiieiiiiiieieeciiieeesstite e e stree e sete e s astaae e e e sabaeeessanbeeesseanaesannnes 5
1.4.2 Functionality LimitatioNnS.......cccuuiiiriiiieniiiiees s 5

1.5 Chapter Organization: ...ttt s raee e e e e s sbe e e s s saeeee s eaaneaeanans 6
CHAPTER 2 BACKGROUND STUDY ..ottt ettt eveee e 9
2.1 Scalability iN RPGS c.couiiiei ittt st e st ee s st e s s abae e e s et e e e e s abee s 10
2.1.1 Definition and IMPOrtanCe.....ciiccciiieeceiiee e ccciie e e etree e e rraae e et bee e e anee s 10
2.1.2 Existing Solutions and APProachescceuueeiiieieee e e 11
2.1.3 Case Study on Scalability.......ccooeiciiiiiiiiiieee 13

2.2 Maintainability iN RPGS........uuiiiiiiiee ettt et ae e s rae e et re e e e abe e e e saaaeeas 14
2.2.1 Definition and IMPOrtanCe:.......cociieiiiie et cceee et e e eeeae e srte e eate e beeenareeeaes 14
2.2.2 Best Practices and Design Patterns.......cccvivueeiiieiiiie et ciree s srvve e ee e 16

vii

2.2.3 Case Study on Maintainabilitycecovieiiiciieie e 17

2.3 Performance in RPGScocuiiiiiiiieiieee ettt st sttt ettt se e s ennes 19
2.3.1 Definition and IMPOrtanCe:......ccciiieicciiie et rrree e e serae e e et bae e e e sraaee s 19
2.3.2 Optimization Techniques and Strategies:cccvviieiivciiie e e 22
2.3.3 Case Studies on Performance Optimizationccccceeeeieeciieciee e 24

2.4 Overview Of ArchiteCture SYIEScceiiiiie i 26
2.4.1 Entity-Component-System (ECS)......ccoeiiieiiieeiieeectieeciee e eteeevreesie e re e e sreeenns 26
2.4.2 Model-View-Controller (MVC)coociveeeeiirieee et eeeite e etree e eevree e eerrae s eeraae s 27
2.4.3 Component-Based Archit@CtUreccouueeeiiiieie e 27
2.4.4 Hierarchical Level Streaming......ccccuiiiiiiieiiiiiieiicciiecc st svvee s s sree e 28
2.4.5 Advantages and DisadVantagescccveeeeiiieeeiieiieeeeeieee e e et e e 28
2.4.6 Impact on Scalability, Maintainability, and Performance:..........cccooeveevvveercnneen. 30

CHAPTER 3 REQUIREMENTS ANALYSIS ...ooiioiieeeeeeeeeeeee e 31

3.1 USEr REQUITEIMENTS: ..eiiiiieieiieeiiiiieeeeeeeessstiirtreteeeeeesssabitraeeeeeeeeessssasnssnaaeeaeenssannnssneees 32
3.1.1 USEI PEISONAS ...ueeiieiiiiieeeiiieeee et te et te s e ie e eeee e e e e et e s s beee s sseaee s sanbreeessamneeas 33
3.1.2 USE CaSE SCONAIIOS. .cc.vveeeureeiieeeiete sttt ettt ee s ree s sreee s rae s enne e sereeenreesereeesneeenane 34
3.1.3 USE CaSE DI@BIaM ...uueeiiiiiiie et ee e e et e e ee e e e s e e e ar e ee e e e s e s ananaeeaeaeeaeennnns 36

3.2 FUNCLIONAl REQUIFEMENTS: ...uviiiiiiie e ittt ettt ee e st ae e e s te e e s sabbe e e s saaaeeas 38
3.2.1 Character System ReqUIrEMENTS:ccvveeeiiiieie ettt tree e errrre e et be e e e aaeens 38
3.2.2 Quest System ReqUir€mMENTS:ueeeiiiiiiiiie e e e e 39
3.2.3 ltem & Weapon System RequiremMents:ccoccvvieiieeeeiiiiee e es e e sneees 39
3.2.4 Combat System REQUIFEMENTS:ccccviiieeeiiiieeeceieee e eire e e iree e e enarre e e e et bee e e e naneeas 40

3.3 Non-Functional REQUIFEMENTS.......ciiiiiiiiiiiiie st sbre e e sabae s 40

3.4 Technical REQUITEMENTS.uiiiiiiiiee ittt e e st e s srarae s e s sabbe e e s sabaee s 41

CHAPTER 4 DESIGNccotiiiiiteiiiieeieeeite et esreesiee e e saeessteessseesssnessssessssassnsseenns 44

4.1 Features of the RPG Architectural Framework..........coccoeoriiiiiiniineiineeeeecee 45
4.1.1 Features of the Character DESINEr........ceeeccieeeeeiieee et 45
4.1.2 Features of the QUESE Creatorcociiieeriieieeee et 47
4.1.3 Features of the temM Creator ..ottt 48
4.1.4 Features of the Combat Creator........ccoceeverieeiee e 49

4.2 Technical RepresentatioNnS........uuiiccuiiee ittt s s srae e e s s abe e e e e 50
4.2.1 Entity Relationships Diagramc.ueiieeiieieiiiieeiniiieie s criie e ssree e s ssraee s ss e e e sae s 50
4.2.2 Flow Chart for Character DESIgNEr.........cccveeceieeieeieiie e ectie et et ere e seare e 52

CHAPTER 5 IMPLEMENTATION ...ttt ettt 54

viii

5.1 Technical IMplementationcccueiiiciiir e 54

I A D 1AV CY [o] 4 V=T o A o o Yol Ty SR 55
5.3 System Implementation DetailS........cccceeeiciiieeeiiieee et 56
5.3.1 Character System FrameworK.......ccco it 56
5.3.2 Combat System FrameWorK.......cccuuiiiiiiiiiiiiiee et e 63
5.3.3 Quest System FrameWorKooceiiiiiiiiec e 68
5.3.4 1tem System FrameWorKcoiiiiiiiiiiie e 73
CHAPTER 6 TESTINGciiioiiiiiieeieeeieerteesiee ettt steeseteeiteesseessaessssaesssneensneenns 75
6.1 Testing Plan and EXECULIONc.iciiie ittt ettt ee s s s s e e e saaae s 75
6.1.1 FUNCLIONAl TESTING ..ceecvvieeee ettt e e e rrae e e e eaa e e e e s bra e e e sanaeeas 75
6.1.2 INtEEratioN TESTINGuuuiiiiiiee it ee e e e e e e e e e e e e s anae e e eeaeeeeeenans 77
6.1.3 USability TeSING ..uuiiiiiiieei ittt e s s a e e e sr b e e e e s naaee s 78

6.2 Results Analysis and DiSCUSSIONciiivuuieiiriiiieeiitiieeessieeeseieeesssiree s ssaeeesssssbeeeessanseeas 78
6.2.1 TEST RESUILS ..ttt ettt st st e sb e e st e esibeesbeeesaeeeenne 79
6.2.2 Encountered Issues and BUg FIXESccuuiiiiiiieiiiriiiie s ciiee s e s srvee e e siae s 80
6.2.3 OVEIAll ANGIYSIS ..vveiieiciiieie ettt re e et eebe e e st ae s e e eaate e s e bbee e e eraaaes 81
CHAPTER 7 CONCLUSION......ctiie ettt eeee ettt eetee st e e e eevee e estaee s esnnsaeeennns 82
7.1 Evaluation of Project ObjJECHIVEScccccuviei ittt ettt 83
7.2 Major Learnings from the ProjECt.........iiiiieiciieceeiieciee ettt e 85
7.3 Remaining Work, Potential Improvements and Future Plansccccccvviveiieeeccnnnnn. 85
REFFERENCES ...ttt ettt e st e e site e s ba e st eesntaesnseessnaesnnaesnnneas 88
APPENDIX ..ottt ettt st e ettt s e e st e e tbe e ssbeesstaeesnseesnseeesnneesnsaeennee s 91
AppendiX A: TUINITIN REPOI ..viiiiiiiiie ittt e e sre e s stae e s s stae e e s snbeaeeeas 91

X

LIST OF TABLES

Table 2.1 Advantages and Disadvantages of Architecture Styles

LIST OF FIGURES

Figure 3.1 Use Case Diagram of RPG Architectural Framework............cc..cccoeenee. 36
Figure 4.1 Entity Relationships Diagram of the RPG Architectural Framework 50
Figure 4.2 Flow Chart of Character Creation with Character Designer 52
Figure 5.1 Increase Max Health Function.............cccoviviiiiniiiiiceeeeeeeee 56
Figure 5.2 Increase EXP FUNCHONcccviiiiiiiiiieiiecieeeeece et 57
Figure 5.3 Increase Level FUNCLION..........cccieiieiieiiiieec e 57
Figure 5.4 EventGraph of BPC_CharacterStatcccccvevievienienieeieeieceeseeeeeans 58
Figure 5.5 BPC_ThirdPersonHero VIeWportccccceeevievieeniienienieeieeie e 59
Figure 5.6 Main HUD Designer Modecccoevvieviieniienienieeie et 59
Figure 5.7 Setting UL EVENTc.cooiiiiiiiiiiiieieee ettt ens 60
Figure 5.8 Enemy Al Radius HitBOXcccoeiiiiieiiiieeceeeeeee e 61
Figure 5.9 Enemy Al Reference FIOW........ccocovioiiiiiiiiiiiieiieececeecee e 62
Figure 5.10 Attack 1 Animation Montage.............eceeveerienieriieecie et 63
Figure 5.11 Attack 1 Animation Implementation.............cceceverveererienenieneneeieens 64
Figure 5.12 Sphere Tracing to Detect Enemies..........cccoeeueeeieerieieenienieeie e 64
Figure 5.13 Event AnyDamage for BP_ Dummy Blueprint............ccooeereeniennnnnn. 65
Figure 5.14 Continuation of Event AnyDamage for BP_ Dummy Blueprint............. 65
Figure 5.15 BP_Projectile Fireball VIieWpOTt........ccovoiiroiiiiiieiieieece e 66
Figure 5.16 BP_AOE_FireTornadoccccceeiieiiiriiiiieiieeeeeeee e 67
Figure 5.17 Quest System Related Filesccoeiiiiiiiiiiieeeeeee e, 68
Figure 5.18 WB_Quest List Ul DeSIZNeT.......cccecieiierieeiieieeieeeeree e 69
Figure 5.19 Blueprint Graph of WB_ QUeStLiSt........cccevvvieiiieriieiieriecie e 69
Figure 5.20 Quest VIEW Ulooiiiiiiieiee ettt 70
Figure 5.21 QUESt NPCoiiiiiiiieeceeeee ettt raesaeeabeenreens 71
Figure 5.22 BPC_Equipping Reference VIEWETccccuvvvvvevieneenieeieeie e 73

X1

LIST OF ABBREAVIATION

Abbreviation Definition

RPG Role Playing Games
FYP Final Year Project

ECS Entity-Component-System
MVC Model-View-Controller
SE Software Engineering
FPS First Person Shooter
NPC Non-Playable Character
GPU Graphic Processing Unit
Al Artificial Intelligence
HP Health Points

EXP Experience Points

Ul User Interface

BP Blueprint

WB Widget Blueprint

AOE Area of Effect

VFX Visual Effects

Xii

CHAPTER 1
INTRODUCTION

1.1 Problem Statement

Role Playing Games (RPG) is a genre within the industry of video games
where it consists of the intricate worlds and deep gameplay from combat to forging
items or weapons. RPGs have captivated players for decades, yet developers often
face architectural issues that limit their creations' potential. Current frameworks
struggle with inflating storage demands, balancing act inaccuracies, and performance
bottlenecks, hindering creativity and scalability. These issues are logically derived
from the field of Software Engineering (SE). As a passionate gamer and aspiring
developer, I faced multiple problems when I was trying to enjoy playing existing

RPGs to the point where [wanted to solve those game developers’ problems myself.

1.1.1 Problem Identification

The problems that the game developers are encountering would be classified as these

challenges:

o Scaling: Current frameworks often buckle under the weight of expanding

content, burdening players with excessive storage requirements.

e Maintainability: Games are evolving with updates and player
feedback. Yet, modifying core components within current frameworks can
feel like navigating a maze, delaying long-term and short-term

maintainability and agility.

o Performance: Immersing players in the real world demands efficient resource
utilization because not everyone can afford good computers. However, many
existing architectures out there fall short, resulting in performance

inconsistencies that disrupt the flow of gameplay.

1.1.2 Personal Interest

This project is more than just academic for me; it's about revolutionizing
RPG game development. I'm passionate about creating games that go beyond
imagination and set new industry standards. With every line of code, I aim to unveil a
game that resonates with players worldwide and makes a lasting impact on the
gaming world. My experience with RPGs has given me a deep love for their
storytelling and strategy. Seeing the constraints of current frameworks has inspired
me to innovate. Maybe one day my upcoming development of the RPG video game

would attract the whole world’s attention.

1.2 Project Objectives:

This project aims to address the limitations of existing RPG development
frameworks by creating a novel framework that enhances scalability, maintainability,

and performance. To achieve this goal, I have established the following objectives:

Objective 1: Develop a Character Designer

Create a robust character design system that allows for customizable
character stats, leveling, and UI. This system will focus on scalability and

maintainability, ensuring that it can handle a variety of character types and abilities.

Objective 2: Develop a Quest Generator

Build a flexible quest generation system that enables the creation of complex
quest lines with NPC interactions and objective tracking. This system will be
designed to maintain high performance even as the number of quests and interactions

increases.

Objective 3: Develop an Item Creator

Implement an item creation system that supports diverse item types,
equipping mechanics, and inventory management. The system will be built with
scalability in mind to accommodate a large number of items and ensure ease of

maintenance.

Objective 4: Develop a Combat Creator

Establish a modular combat system with customizable attack and defense
logic. This system will be optimized for performance and designed to integrate

seamlessly with the character and item systems.

Objective 5: Implement a Playable RPG Prototype

Utilize the custom-made framework to develop a playable RPG prototype.
This prototype will demonstrate the functionality and user experience of the
framework. Comprehensive playtesting will be conducted to evaluate the
framework's scalability, maintainability, and performance compared to a baseline

prototype built with a traditional framework.

1.3 Deliverables

This project will produce several key deliverables demonstrating the research,
design, implementation, and evaluation of the custom architectural framework for

RPG development within Unreal Engine.

1.3.1 Custom Architectural Framework for RPGs with Unreal Engine

This architectural framework will be the main product of FYP Phase 2

concerning Objective 2. The framework will be tailored to fit the creation of video

games related to the genre of RPG by using its templates. The main features of the

framework would be:

il

Character System

Quest System

Items & Weapons System
Combat System

The user document will also be made to ensure transparency and

reproducibility, making it easy for others to understand the design choices and

potentially contribute into my work.

This

1.3.2 Playable RPG Prototype

functional prototype will demonstrate the practical implementation of my

custom architectural framework in a basic RPG setting:

Core gameplay mechanics (e.g., character movement, inventory management,
simple combat) showcasing the framework's capabilities.
User-friendly interface allowing interaction with the game world and

experimentation with the framework's functionalities.

The prototype will serve as a tangible proof-of-concept and provide valuable

feedback for further development.

1.3.3 Evaluation Report

This report will assess the effectiveness of the prototype and framework

based on the objectives outlined in Section 1.2:

Playtesting results and user feedback, gathered through structured testing
sessions or questionnaires.

Evaluation of the framework's success in achieving scalability,
maintainability, and performance goals through comparisons with

benchmarks.

e Discussion of the prototype's performance, limitations, and areas for

improvement.

1.4 Scope Definition

This project aims to develop a custom architectural framework within Unreal
Engine 5 specifically designed to facilitate the creation of open-world RPGs with a
focus on scalability, dynamic content, and diverse entity interactions. While drawing
inspiration from existing frameworks and approaches, this project will not attempt to
replicate their full development of the game but rather focus on core mechanics and

key features tailored to the required specific design choices.

1.4.1 System Boundaries

The framework will encompass core functionalities like entity management,
data-driven design, world streaming, and basic gameplay. User interface elements
and complex narrative systems will be included but limited in the upcoming
development phase, potentially being addressed in future iterations. Integration with
external asset packs or third-party Artificial Intelligence (AI) solutions might be

considered based on compatibility and project needs.

1.4.2 Functionality Limitations

Due to project scope and time constraints, the framework iteration might not
support features like multiplayer functionality, persistent online worlds, or highly
complex character customization systems. These features are not cored to
demonstrating the framework's potential and can be explored in future development

stages.
Technology Stack:

e Programming Language: Visual Scripting Blueprint

e Game Engine: Unreal Engine 5.1

Libraries/Frameworks: Potential integration of open-source libraries for
specific functionalities (e.g., data parsing, networking) will be evaluated

during development.

In FYP Phase 2, these are the expected outcomes if the development is

completed within the scope of the project:

1.

A functional prototype showcasing core gameplay mechanics and framework
capabilities within a basic open-world environment.

Detailed technical documentation outlining the framework's design,
implementation, and usage.

An analysis report evaluating the chosen architectural approaches and the

impact on the framework's performance and scalability.

1.5 Chapter Organization:

This report delves into the development of a custom architectural framework

for open-world RPGs within Unreal Engine. Here's a short overview of the chapters

and their key topics within this FYP 2 Final Report:

Chapter 1: Introduction

This introductory chapter serves as a gateway to the project. It provides a

concise overview of open-world RPGs, shedding light on the inherent challenges

encountered during their development. The chapter discusses the motivation, defines

the project's scope, objectives, and outlines the anticipated deliverables.

Chapter 2: Background Study

Exploring deep into existing architectural approaches for open-world RPGs,

this chapter accurately examines their strengths and limitations. It intricately dissects

and defines pressing challenges such as scalability, maintainability, and performance,

offering clear examples from well-known RPG titles to illustrate these challenges.

Furthermore, it studies the efforts of other developers in addressing similar issues,

providing valuable insights into the landscape of RPG game development.

Chapter 3: Requirements Analysis

With a focus on clarity and precision, this chapter articulates the functional
and non-functional requirements essential for the architectural framework's success.
It categorizes requirements based on priority and impact, emphasizing crucial
features vital for addressing scalability, performance, and maintainability concerns.
Additionally, the chapter outlines evaluation criteria and metrics for measuring the
framework's efficacy, while also highlighting any unique project demands or

considerations.

Chapter 4: Design

Detailing the chosen architectural approach, this chapter unveils the
framework's core components and functionalities. It translates the system
requirements into concrete technical representations, employing diagrams and
flowcharts to elucidate the framework's internal structure and interactions. Design
decisions regarding technology, data structures, and communication protocols are

meticulously explained, alongside potential challenges and mitigation strategies.

Chapter 5: Implementation

This chapter provides a comprehensive account of the technical
implementation of the framework. It details the development process, including the
tools and methodologies used, and gives an in-depth description of the system's
implementation. Each of the core systems; Character System, Combat System, Quest
System, and Item System is discussed in detail, highlighting the technical challenges

faced and the solutions implemented.

Chapter 6: Testing

This chapter outlines the testing plan and execution, encompassing
functional, integration, and usability testing. It presents the test results, analyses, and
discusses encountered issues and their resolutions. The overall analysis of the testing

phase provides insights into the framework's reliability and performance.

Chapter 7: Conclusion

The final chapter offers a reflective summary of key achievements and
contributions made throughout the project's trajectory. It discusses the evaluation of
project objectives, major learnings from the project, and the remaining work,

potential improvements, and plans.

CHAPTER 2
BACKGROUND STUDY

Embarking on any ambitious development journey necessitates a thorough
understanding of the scenery upon which it unfolds. This chapter investigates into the
landscape of open-world RPG development, specifically illuminating the intricate
challenges and solutions surrounding scalability, maintainability, and performance.
By wisely examining existing approaches, analysing ongoing research, and exploring
industry trends, this study aims to navigate these interconnected issues and lay the

foundation for informed decision-making within our own project.

Our approach in defining the challenges within this chapter explains in three
stages. First, the method of defining would unpack each challenge individually,
defining them broadly in SE, then within the specific context of video games and
especially open-world RPGs. These three stages would explain the specifics of the

four challenges

Next, we'll shift our focus to examine the interwoven fabric of these
challenges. By delving into their correlations and interdependencies, it aims to reveal
how they often influence each other within the complex tapestry of development.
Understanding these connections is crucial for making informed decisions that

holistically address various needs, rather than tackling them in isolation.

Throughout this chapter, the background study serves as a crucial basis,
propelling us forward towards the design and implementation of a framework that

effectively addresses these obstacles, paving the way for a successful project.

2.1 Scalability in RPGs
2.1.1 Definition and Importance

Definition of Scalability in SE:

According to CyberLink ASP (2021), software scalability refers to its ability
to adapt to varying demands and workloads. This includes handling increasing user
numbers, data volumes, and complexity while maintaining performance and cost-

effectiveness.

CyberLink ASP (2021) further emphasizes the importance of software
scalability, highlighting its impact beyond seasonal businesses. It allows for cost-
effective adaptation to various demands and complexities, ensuring system integrity

and user experience even during fluctuations.

Scalability in the Context of Video Game:

According to a definition found on dictionary.com, scalability refers to how
effectively a solution performs as the size of the problem grows. This concept is
particularly relevant for game developers, especially in the context of multiplayer
networked games where the number of simultaneous users serves as an indicator of
the problem's scale. However, within the game developers’ community, Dean Macri
(2004) explains that scalability commonly denotes the difficulty of ensuring that a
game operates satisfactorily across diverse system configurations, which may differ

in terms of features, performance, or both.

Scalability in the context of video games encompasses multiple facets,
including storage scalability, content scalability, player count scalability, and
world scalability. A scalable video game architecture ensures smooth and consistent
performance across different hardware setups, supports varying player counts and
play styles, and enables seamless integration of additional content and features

without compromising the overall gaming experience.

10

Scalability in RPG Genre:

Scalability in RPGs refers to the capability of the game's architecture to
accommodate the evolving needs and expectations of players as they progress
through the game world. This includes the ability to seamlessly integrate new
characters, quests, items, and storylines without overwhelming the game engine or
causing performance issues. Importantly, scalability in RPGs extends to supporting
dynamic player interactions, expansive open worlds, and robust multiplayer
experiences while maintaining stability and immersion. A scalable RPG framework
empowers developers to create rich, expansive game worlds that grow and evolve

alongside the player community, ensuring enduring enjoyment and engagement.

Moreover, an article written by Craig Stern (2017) in Sinister Design blog, he
emphasized regarding the definition of Content Scalability and how it affects RPGs.
Based on the article, content scalability refers to the “design that permits the
usefulness of (or challenge posed by) existing game content to scale so that the

bl

content remains relevant throughout the whole game.’

2.1.2 Existing Solutions and Approaches

Content Scalability Solutions:

In Craig Stern's (2017) article "Designing RPG Mechanics for Scalability,"
published on Sinister Design's website, prominent indie developer Craig Stern,
known for the turn-based tactics game Telepath Tactics, explores into the crucial
issue of balancing content creation with maintaining engaging gameplay throughout
an RPG's progression. He proposes three key strategies to achieve '"content
scalability," ensuring players encounter fresh challenges and meaningful choices

without overwhelming developers with content creation burdens.

1. Dynamic Enemy Scaling: This technique involves spawning enemies with

variable power levels based on the player's progress. For example, a basic

11

goblin encounter in early levels could dynamically scale to be a more
formidable foe if the player encounters it later in the game. This ensures
individual encounters remain relevant and challenging throughout the
experience, mitigating the need for excessive enemy types while promoting a

sense of growth and adaptation.

2. Linear Stat Progression: Stern suggests employing linear instead of
exponential growth for item and equipment stats. This approach avoids the
"equipment treadmill" syndrome, where players constantly replace old items
with newer, more powerful ones as they progress. Linear progression
encourages players to strategically utilize and personalize their gear
throughout the game, making each equipment decision meaningful and

extending the lifespan of individual items.

3. Percentage-Based Effects: Implementing percentage-based modifiers for
various in-game effects and character defences is another key strategy. This
ensures mechanics remain balanced and engaging as the player progresses.
For instance, instead of granting flat attack bonuses, applying a percentage
increase to damage output adapts to the player's overall stats, maintaining
meaningful challenges and strategic depth throughout the gameplay

experience.

Stern's article offers valuable insights and practical methods for addressing
content scalability challenges in RPG development. These strategies could be
particularly relevant to the project in FYP Phase 2. If these strategies are wisely
applied to my development, my architectural framework would provide good content
scalability to the users. Further exploration and analysis of their applicability and
potential adaptations within the framework will be important for developing a robust

and engaging scalability solution.

12

2.1.3 Case Study on Scalability

Genshin Impact's Scalability Issues:

Genshin Impact, a popular open-world RPG developed by miHoYo, presents
a compelling case study on scalability challenges within game development. Initially
released with a modest installation size of 30GB for Version 1.0 in September 2020,
the game boasted 22 playable characters, 87 weapons, and two explorable nations
(Games8, 2023). However, as the game evolved, subsequent updates saw a significant
expansion in content, resulting in Version 4.4 released in January 2024 with a
staggering size of 150.0 GB. After this update, the game has a total up of 79 playable

characters, 179 weapons, and five explorable nations (Sharma, 2024).

Lessons Learned:

The lessons learned from Genshin Impact's scalability challenges are highly
relevant. By proactively addressing scalability considerations in the design and
implementation of my framework, I can ensure that it remains resilient to content
expansion and capable of accommodating the evolving needs of developers. This
entails adopting modular design principles, implementing optimization strategies,
and soliciting feedback from the developer community to iteratively refine and
enhance the framework's scalability capabilities. By learning from real-world case
studies such as Genshin Impact, I can effectively navigate scalability challenges and

deliver a robust and future-proof architectural solution for RPG development.

13

2.2 Maintainability in RPGs
2.2.1 Definition and Importance:

Definition of Maintainability in SE:

Based on the IEEE Standard Glossary of Software Engineering Terminology,
the formal definition of maintainability is “the ease with which a software system or
component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment.” (Institute of Electrical and

Electronics Engineers, 1990)

The importance of applying maintainability in SE is to make the development
of an application easy to understand by developers while making it easy for them to
update or repair the application. A good maintainability of a software application
would lead to cost reduction of the real- world SE projects. Chen, Alfayez, Srisopha,
Boehm, Shi (2017) stated that highly maintainable systems would lead to decreasing
75% life cycle’s cost.

Maintainability in the Context of Video Games:

In general, maintainability in game development is all about keeping the
video game alive and thriving. It refers to the ease with which a game can be
modified, updated, and improved over its lifetime. The importance of having good
maintainability in a video game would lead to smooth implementation of

maintenance.

In a thesis written by Jarman (2010), he mentioned the three types of
maintenance in the video game industry. The three types are corrective maintenance,
perfective maintenance, and adaptive maintenance. Corrective maintenance involves
addressing bugs and errors directly after release. Perfective maintenance focuses on
improving and adding new features to a game over its lifecycle. Adaptive

maintenance involves updating a game to accommodate changes in the environment

14

where it operates, such as updating for new service packs or operating system

changes.

While corrective maintenance is mainly achieved through patches or updates,
perfective maintenance often involves downloadable content, which can be released
to users via network connections. Adaptive maintenance is less common in the
gaming industry but may involve updating firmware or operating systems on gaming
consoles. The text emphasizes the importance of networks in enabling maintenance
activities, such as patching bugs and releasing downloadable content, which

contribute to user satisfaction and prolonged profitability of video games.

Maintainability in RPG Genre:

Maintainability in the context of open-world RPG refers to the ease with
which the game’s architecture or design can be updated, modified, and extended over
time while ensuring its stability, performance, and coherence. It encompasses various
aspects, including code maintainability, content management, and overall game

design flexibility.

When it comes to minor content expansion, continuously adding new quests,
characters, locations, items, and other content to keep the game fresh and engaging
for players. This may involve designing and implementing new game mechanics,
narratives, and assets while maintaining consistency with the existing game world

and lore.

Furthermore, performing balancing and fine-tuning towards game mechanics,
combat systems, character progression, and economy would be required to ensure a
satisfying and balanced gameplay experience. This involves analysing player
feedback, monitoring gameplay metrics, and adjusting parameters such as difficulty
levels, resource availability, and enemy Al behaviour. Thus, structuring an upright

architecture would lead to smooth maintainability.

15

2.2.2 Best Practices and Design Patterns

General Principles:

A fundamental approach to creating maintainable RPG architectures is to

adhere to general principles that promote modularization, clarity, and flexibility.

Modularization involves breaking down the game into smaller, independent
modules responsible for specific functionalities, such as combat, inventory, and
quests. This promotes isolation of concerns and facilitates easier modification.
Furthermore, minimizing dependencies between modules through loose coupling
allows for modules to evolve independently, achieved by using interfaces and events
for communication (Nystrom, 2014). For example, when a player interacts with an
NPC to initiate a quest, the quest system module can subscribe to events triggered by
the NPC interaction, allowing for decoupled communication between the two

systems.

Following the Single Responsibility Principle ensures that each class or
component has a single, well-defined responsibility, reducing complexity and
enhancing code maintainability (Gamma, Helm, Johnson, Vlissides, 1994). The
Single Responsibility Principle would be applied to each module or component
within the RPG game. For example, a combat system module should focus solely on
managing combat mechanics, while an inventory system module should handle

inventory-related functionality exclusively.

Implementing a data-driven design approach involves storing game data, such
as items, characters, and quests, in external files or data tables, allowing for easy
modification without recompiling code. In addition, maintaining clear naming

conventions for variables, functions, and classes enhances code readability and

16

understanding, contributing to overall code maintainability (Unreal Engine

Documentation, n.d.).

Design Patterns:

Incorporating design patterns into the architecture of RPG games can
significantly contribute to their maintainability and extensibility. The Observer
Pattern facilitates notifying multiple objects about changes in another object,
beneficial for quests, events, and UI updates (Unreal Engine Documentation, n.d.).
Additionally, employing the Component Pattern enables the assembly of complex

entities from smaller, reusable components, promoting flexibility and customization.

Utilizing the State Pattern allows for managing an object's behaviour based
on its internal state, applicable for character states such as idle, running, and
attacking. Additionally, the Repository Pattern provides a unified access point to

data, simplifying data access and management within the game (Nystrom, 2014).

2.2.3 Case Study on Maintainability

Maintainability Issues in Over the Edge:

In the RPG game industry, one game known to have maintainability issues is
‘Over the Edge’. This surreal role-playing game, created by Jonathan Tweet and
Robin Laws and published by Atlas Games, is based on the mysterious Island of Al
Amarja (Wikipedia, 2017). The game's maintainability issues stem from its departure
from the conventional character representation system. Instead of using attributes and
skills, characters are quantified with "traits", which are created and defined by the
player. Each character has one primary trait, two secondary traits, and one flaw, and

actions are based on these traits 3.

17

The maintainability issues arise due to the unconventional way characters are
represented and the complexity introduced by the traits system. This departure from
traditional RPG character representation could potentially lead to maintainability

challenges in terms of game balance, rule complexity, and long-term support 3.

Lesson Learned:

Over the Edge innovated by using a trait-based character representation
system, but this innovation led to maintainability issues. When developing game
architecture, it's important to balance innovation with maintainability. While
innovation is crucial for creating unique gameplay experiences, it's equally important
to consider the long-term maintainability of the game. When introducing new
systems or mechanics, assess their potential impact on maintainability and plan for

their long-term support.

The complexity introduced by the trait-based system in Over the Edge
contributed to maintainability issues. Application: In game architecture development,
strive for simplicity and consistency. Complex systems can introduce maintainability
challenges, so it's essential to keep the architecture as simple and consistent as
possible. This includes using standardized coding practices, clear documentation, and

modular design to facilitate easier maintenance and updates.

The unconventional character representation system in Over the Edge may
have hindered long-term support and updates. When developing game architecture,
consider future-proofing the design. Anticipate potential updates, expansions, and
modifications, and build the architecture to accommodate these changes. This
includes creating flexible and scalable systems that can adapt to future gameplay

mechanics, content additions, and technological advancements.

18

2.3 Performance in RPGs
2.3.1 Definition and Importance:

Definition of Performance in SE:

Based on the IEEE Standard Glossary of Software Engineering Terminology,
the formal definition of performance is “The degree to which a system or component
accomplishes its designated functions within given constraints, such as speed,
accuracy, or memory usage.” (Institute of Electrical and Electronics Engineers,

1990).

This includes speed, responsiveness, resource utilization, scalability, and
availability. Speed pertains to the software's responsiveness to user input and task
completion time. Responsiveness reflects the software's ability to display updates
promptly and react swiftly to user interaction. Resource utilization gauges the
efficiency with which the software employs system resources such as memory, CPU,
and network bandwidth. Scalability assesses the software's capacity to accommodate
increased workloads or user requests without performance deterioration, while
availability underscores the software's consistency and reliability in accessibility and

operation.

The importance of performance in software engineering is manifold. It
directly influences user experience, operational costs, system reliability, scalability,
and competitive advantage. Poor performance can lead to user dissatisfaction,
increased expenses, system instability, scalability limitations, and reduced

competitiveness in the market (Bejawada, 2019).

Performance in the Context of Video Games:

In the context of video games, performance extends beyond technical metrics
to encompass aspects crucial for player engagement and enjoyment. It encompasses

frame rate, input latency, visual fidelity, stability, and loading times. Frame rate

19

denotes the number of frames rendered per second, impacting visual smoothness and
responsiveness. Input latency measures the delay between player input and in-game
response, critical for action-based gameplay. Visual fidelity encompasses the
graphical quality and complexity of the game world, influencing immersion and
aesthetics. Stability refers to the absence of crashes, bugs, or glitches that disrupt

gameplay, while loading times affect immersion and flow.

The significance of performance in video games lies in its direct impact on
gameplay experience, immersion, accessibility, and competitive advantage. High
performance enhances gameplay fluidity, player enjoyment, accessibility, and skill
expression, while technical limitations necessitate optimization for diverse hardware

configurations.

Performance in RPG Genre:

In the field of game genres, different categories prioritize performance
aspects according to their gameplay requirements. Fast-paced genres such as Action
First-Person Shooter, and rhythm games prioritize high frame rates per second (FPS)
to ensure smooth reaction-based gameplay. Even minor frame rate dips can

significantly impact performance in these genres.

Conversely, story-driven genres like RPGs and adventure games place more
emphasis on stability and visual fidelity to create immersion and maintain
atmosphere, where frame rate may be of lesser importance. Simulation and strategy
games prioritize responsiveness and input latency to facilitate accurate decision-
making and control. For mobile games, careful optimization is necessary due to

hardware limitations, focusing on battery life and efficient resource usage.

For instance, a competitive First-Person Shooter game on PC may target

ultra-high frame rates may be around 144+ FPS to ensure the smoothest possible

20

gameplay, necessitating powerful hardware and meticulous optimization. In contrast,
a story-driven RPG on console might prioritize a stable 30 FPS with high-quality
textures and environments to enhance immersion, valuing visual fidelity over raw
speed. Similarly, a mobile RPG may leverage stylized graphics and efficient

rendering techniques to deliver smooth gameplay even on low-end devices.

Performance assumes added importance in RPG games due to their expansive
worlds, intricate systems, and narrative emphasis. It encompasses world streaming,
NPC interaction, combat fluidity, inventory management, and stability. World
streaming ensures seamless loading of game elements, NPC interaction facilitates
smooth conversations and gameplay, while combat fluidity and inventory
management ensure engaging experiences. Stability maintains consistent
performance, crucial for immersion, combat satisfaction, character engagement,

large-scale battles, complex environments, and emotional connection to the narrative.

The importance of performance in RPG games lies in its pivotal role in
sustaining immersion, enhancing gameplay experiences, facilitating character
engagement, managing complex encounters, and fostering emotional connection to
the narrative. To do so, building a good architecture that would complement the

necessary game design would lead to a higher quality of game performance.

21

2.3.2 Optimization Techniques and Strategies:

3D Game Development Optimization:

Yasmin Curren (2021), an associate technical designer known for the game
"Perfection," which faced performance issues such as lag and low frame rates

impacting player immersion, shares her top 10 tips for optimizing game performance.

Curren emphasizes the importance of using a profiler to assess performance
and identify areas needing improvement, including script code, assets, and resources.
She advises against excessive rendering with multiple cameras and suggests using
the dot product method to optimize rendering. Curren recommends utilizing layers to
specify what assets a camera can render, optimizing models by reducing poly count

and removing unnecessary objects.

She advocates for draw call batching, occlusion culling, and light baking
techniques to improve rendering efficiency. Additionally, Curren advises optimizing
code by reducing update function complexity and organizing logic into separate
functions. These strategies aim to elevate game performance from under 20 frames

per second to at least 60 frames or more.

RPG-Specific Strategies with Unreal Engine:

Based on the Unreal Engine Documentation (n.d.), Level Streaming would
manage large open worlds by loading and unloading sections dynamically based on
player proximity. Implementation of efficient streaming strategies in Unreal Engine
can be done with Level Streaming Volumes. Furthermore, when it comes to the
optimization of non-player characters (NPC), NPC Culling can be done by reducing
the number of active NPCs in the scene based on distance or relevance to the player.
Within Unreal Engine, developers shall utilize "Hidden GameObjects" functionality
and visibility checks to perform NPC Culling.

22

In the perspective of graphics optimization regarding the details of characters,
props, and foliage, developers can use Levels of Detail (LOD) to adjust complexity
of models based on the distance from the camera. LOD optimization would enhance
game’s performance by reducing workload on the graphics processing unit (GPU). In
Unreal Engine, LOD settings can be configured for static meshes through LOD
Group settings in the Details panel. For better graphics in RPG, this LOD for models
near to the cameras would be maxed out while the furthest models would be

minimised but not much.

In Unreal Engine, leveraging GPU instancing for repeating assets can
significantly enhance rendering efficiency by minimizing draw calls and reducing the
GPU workload. This optimization technique is particularly beneficial when dealing
with numerous identical objects in a scene. Developers can implement GPU
instancing using Unreal Engine's "InstancedStaticMeshComponent" class, which
allows multiple instances of a static mesh to be rendered with a single draw call. By
utilizing this class, developers can efficiently render large numbers of identical
objects while maintaining optimal performance. This approach is particularly useful
for environments containing repetitive elements such as foliage, rocks, or props. By
incorporating GPU instancing into Unreal Engine projects, developers can achieve

smoother performance and enhance the visual fidelity of their games or applications.

In Unreal Engine, optimizing Al pathfinding involves implementing efficient
algorithms and strategies to enhance the performance of artificial intelligence
navigation systems. Utilizing Unreal Engine's built-in behaviour tree system,
developers can design complex Al behaviours while ensuring streamlined
pathfinding. By carefully designing behaviour trees, developers can minimize
unnecessary calculations and improve the efficiency of Al decision-making
processes. Additionally, spatial partitioning techniques, such as quad trees or
navigation meshes, can be employed to optimize pathfinding computations by
reducing the search space and eliminating redundant calculations. These techniques

partition the game world into smaller, manageable regions, allowing Al agents to

23

navigate more efficiently. By incorporating these methods into Unreal Engine
projects, developers can achieve smoother and more responsive Al behaviour,

enhancing the overall gameplay experience for players.

2.3.3 Case Studies on Performance Optimization

Cyberpunk 2077 serves as a notable example of poor performance
optimization in open-world RPGs, highlighting the repercussions of inadequate
technical preparation and rushed development timelines. Upon its highly anticipated
release, the game faced substantial criticism for its subpar performance, particularly

on last-generation consoles such as PlayStation 4 and Xbox One.

Cyberpunk 2077's performance issues encompassed frequent crashes, low
frame rates, and texture pop-in, significantly detracting from the overall gaming
experience. The game's optimization shortcomings were attributed to a combination
of factors, including rushed development schedules, ambitious scope, and technical
challenges in adapting the game for diverse hardware configurations. CD Projekt
Red's failure to prioritize optimization for older consoles led to severe backlash from
players and critics alike, tarnishing the game's reputation and resulting in substantial

financial losses for the company.

Lessons Learned:

The case of Cyberpunk 2077 underscores the critical importance of
performance optimization in game development, particularly for large-scale open-
world RPGs. Prioritizing thorough testing, iteration, and optimization throughout the
development process is essential to identify and address performance bottlenecks

effectively.

24

Adopting modular and scalable architectural designs can facilitate smoother
optimization efforts, allowing for targeted improvements to specific components

without compromising overall system integrity.

Implementing efficient resource management techniques, such as level-of-
detail scaling and texture streaming, can help mitigate performance issues and ensure

a more seamless gameplay experience for players.

By learning from the mistakes of Cyberpunk 2077, our architectural
framework for RPGs will emphasize meticulous optimization efforts from the outset,
aiming to deliver optimal performance across various hardware configurations while

maintaining the immersive and expansive nature of open-world gameplay.

25

2.4 Overview of Architecture Styles

Based on the IEEE Standard Glossary of Software Engineering Terminology,
the formal definition of architecture is “The organizational structure of a system or
component. See also: component; module; subprogram,; routine.” (Institute of

Electrical and Electronics Engineers, 1990)

Software architectural styles refer to the fundamental structural choices and
design patterns that guide the organization and interaction of system components
within a software application. These styles provide a framework for addressing key
architectural concerns such as scalability, maintainability, and performance. These
architectural styles that will be analysed in this subchapter would be ECS, MVC,

Component-Based and Hierarchical Level Streaming

Each architectural style offers distinct advantages and disadvantages. The
styles are required to be integrated to shape the overall structure and behaviour of
software systems. A large and complex system usually implements more than one
architectural style, this would be done by aligning each of the styles into the specific

requirements and objectives of the software.

2.4.1 Entity-Component-System (ECS)

In 1996, Martin explained that ECS is an architectural pattern used in game
development where entities are composed of independent components that define
their behaviour and attributes. The system separates data from behaviour, allowing

for flexible composition and reusability of components across different entities.

ECS is well-suited for RPG game development because it allows for flexible
composition of game entities such as characters, items, and environments. In RPGs,
where characters and objects often have diverse behaviours and attributes, ECS

enables developers to easily create and modify entities by combining reusable

26

components. For example, a character in an RPG may consist of components for

movement, health, inventory, and Al behaviour. (Unity Technologies, 2023)

2.4.2 Model-View-Controller (MVC)

MVC is a software architectural pattern commonly used in web and
application development. It separates an application into three interconnected
components: the Model (data and logic), the View (user interface), and the Controller
(handles user input). MVC promotes modularity and separation of concerns, making

it easier to maintain and extend applications. (Reenskaug, 2003)

While MVC is more commonly associated with web and application
development, its principles can still be applied to game development, especially in
the context of user interfaces and game logic separation (Hod, 2014). In an RPG, the
Model may represent game data such as player stats and world state, the View may
handle rendering and display of the game world, and the Controller may manage

player input and interaction.

2.4.3 Component-Based Architecture

Component-based architecture is a design approach where complex systems
are built from reusable, self-contained modules, or components. Each component
encapsulates a specific piece of functionality and can be easily added, removed, or
modified without affecting other parts of the system just like components of Lego
Block explained by Gillin (2024). This promotes flexibility, modularity, and code

reusability.

RPGs often feature complex systems with various gameplay mechanics,
character classes, and abilities. Component-based architecture allows developers to
design and manage these systems more efficiently by breaking them down into

modular components (Nystrom, 2014). For instance, in an RPG, abilities and spells

27

could be implemented as reusable components that can be attached to different

characters or items, enhancing flexibility and code reuse.

2.4.4 Hierarchical Level Streaming

Hierarchical level streaming is a technique commonly used in game
development to manage large, open-world environments efficiently. It involves
dividing the game world into hierarchical regions or levels and loading/unloading
them dynamically based on the player's position and movement. This allows games
to maintain a seamless and immersive experience while conserving memory and

processing resources. (Unreal Engine Documentation, n.d.)

In RPGs with expansive worlds and seamless exploration, hierarchical level
streaming can optimize resource usage and improve performance. By dynamically
loading and unloading game regions based on the player's location, developers can
create large and detailed environments without sacrificing memory or processing
resources. This is particularly beneficial for RPGs with open-world exploration and

non-linear gameplay, enhancing immersion and player freedom.

2.4.5 Advantages and Disadvantages

Every architectural style cannot fit in every scenario in system development
due to having different sets of advantages and disadvantages. Even in the realm of
game development, various architectural styles offer distinct advantages and

challenges.

28

Table 2.1 Advantages and Disadvantages of Architecture Styles

Architectural Styles Advantages Disadvantages
Entity-Component-System e Flexibility e Complexity
o Code reusability e Potential
performance
overhead
Model-View-Controller e Modularity e Complexity
e Code organization e Potential tight
e Maintainability coupling
Component-Based e Code reusability e Complexity
Architecture e Flexibility e Potential
e Maintainability overhead
e Scalability
e Code reusability
Hierarchical Level e Performance e Potential delays
Streaming e Player immersion

Based on the Table 2.1 above, The Entity-Component-System (ECS)
architecture provides flexibility in designing entities and encourages code reusability
and separation of concerns. However, managing entity-component relationships can
become complex, and large-scale systems may experience performance overhead.
Conversely, the Model-View-Controller (MVC) pattern, although more commonly
associated with web and application development, promotes modularity, and

facilitates maintenance and testing by separating concerns.

Yet, it may introduce complexity in smaller applications and demands careful
design to prevent tight coupling between components. Component-Based
Architecture further enhances code reusability and system flexibility, simplifying
maintenance and scalability. Nevertheless, managing component dependencies can
be challenging, potentially leading to communication overhead. Hierarchical Level
Streaming optimizes resource usage and enhances performance by dynamically

loading game regions, fostering seamless exploration and immersion.

29

However, it necessitates meticulous level design and implementation, with
the risk of loading delays or artifacts. Each architectural style presents a unique set of
pros and cons, affecting aspects such as scalability, maintainability, and performance

in RPG game development.

2.4.6 Impact on Scalability, Maintainability, and Performance:

ECS can enhance scalability by allowing for flexible entity composition and
parallel processing of components. However, improper design or management of
entity-component relationships can impact maintainability and introduce

performance bottlenecks.

MVC promotes modularity and separation of concerns, improving
maintainability and scalability. However, inefficient communication between model,
view, and controller components can impact performance, especially in complex

applications.

Component-based architecture enhances scalability and maintainability by
promoting code reusability and modularity. However, excessive component
dependencies or inefficient communication can affect performance, particularly in

large-scale systems.

Hierarchical level streaming optimizes resource usage and enhances
performance by dynamically loading and unloading game regions. It also improves
scalability by allowing for the creation of expansive game worlds. However,
improper implementation or level design can impact performance and player

experience.

30

CHAPTER 3
REQUIREMENTS ANALYSIS

Chapter 3 delves deeply into the foundational aspects of our RPG
architectural framework within Unreal Engine 5 by meticulously analysing user
requirements. Through an intricate exploration, this chapter aims to gain a
comprehensive understanding of the diverse needs and expectations of game

developers who are potential users of the framework.

It begins by examining various user personas, shedding light on the unique
profiles and demands of developers across different spectrums. Transitioning from
personas to practical scenarios, the chapter vividly illustrates real-world situations,
offering invaluable insights into how the framework might be employed. Moving
beyond theoretical constructs, the exploration delves into the realm of functional
requirements, dissecting critical elements like the character system, quest system,

item and weapon system, and combat system.

Additionally, non-functional dimensions such as usability, reliability, and
performance are scrutinized, aiming to ensure that the framework not only meets
functional demands but also excels in user experience and technical robustness.
Ultimately, the chapter concludes with a thorough examination of the technical
requirements indispensable for the successful implementation and utilization of the
framework. Through this meticulous analysis, Chapter 3 endeavours to provide an
exhaustive understanding of the intricate needs and aspirations that shape the

development of our RPG framework.

31

3.1 User Requirements:

When it comes to the users of my product, it would not be the gamers playing
the RPG video game itself, instead it would be other game developers using my
framework as a template to create their own RPG. Practically, the platform where my
architectural framework can be downloaded or purchased would be Unreal Engine

Marketplace.

As a solo developer or indie studio seeking to create an RPG, the user aims to
develop the game without the extensive time and effort required. The framework
provides a comprehensive set of tools and templates focusing on key RPG elements,
including character, quest, item & weapons, and combat systems. This framework
streamlines the development process by offering modular blueprint components that

can be easily integrated into existing projects in Unreal Engine.

Actor:
Solo developer or developer of an indie studio
Preconditions:

e The developer possesses basic knowledge of game development
principles and programming.
e The development environment, such as a game engine like Unreal Engine

or Unity, is set up and ready for use.
Postconditions:

e The RPG framework components are successfully integrated into the
game project.
e The game project benefits from enhanced gameplay mechanics and

streamlined development process.

32

3.1.1 User Personas

Solo Developer:

e Persona: Alex, an aspiring game developer juggling a full-time job and
passion project of developing RPGs.

e Challenges: Limited time, budget constraints, and novice-level technical
skills hinder Alex's ability to create complex RPGs efficiently.

o Needs: Alex requires a user-friendly framework that offers ease of learning,
usage, and customization, enabling him to develop captivating RPGs within

his constrained resources.

By using this upcoming architectural framework that I will produce, Alex is
able to develop his own RPG game efficiently. Since he lacks manpower, he will
save time and effort by using the template of creating and adjusting characters,
quests, items, weapons, and combat systems within my framework and implementing

them into his RPG.

Indie Studio Developer:

e Persona: Sarah, the lead of a small indie game development team comprising
4 members embarking on their first commercial RPG venture.

e Challenges: Sarah and her team face challenges in balancing costs, managing
workflows effectively, and ensuring scalability as their team expands.

e Needs: Sarah seeks a robust framework that facilitates seamless
collaboration, promotes workflow consistency, and supports future scalability

to accommodate the studio's growth and ambitions.

For a team of indie developers however, a smooth and flexible workflow
would be implemented within the game development cycle by using my framework.
For instance, if Sarah is the developer that handles the characters’ game logic and her
teammate Alisya handles the logic of items and weapons, Sarah can be use the
character system template and Alisya can use the item & weapon system template in

my framework. This will improve the game development’s maintainability.

33

3.1.2 Use Case Scenarios

Setting Up the Unreal Engine Environment:

Scenario: The user initiates the Unreal Engine environment and acquires the
RPG framework package.

Action: Following the provided setup guidelines, the user configures the
environment to ensure compatibility with Unreal Engine, downloading and
integrating the framework from Unreal Engine Marketplace.

Outcome: The Unreal Engine environment is primed, with the RPG
framework seamlessly integrated, enabling the user to commence RPG

development within the familiar Unreal Engine ecosystem.

Implementing Character System within Unreal Engine:

Scenario: The user aims to introduce diverse characters with unique attributes
and abilities into their RPG project.

Action: Accessing the character system module within the framework tailored
for Unreal Engine, the user utilizes pre-designed character classes and
customizable attributes, by using Unreal Engine's Blueprint system for visual
scripting if needed that my framework provides.

Outcome: The user successfully integrates the character system into their
Unreal Engine project, empowering them to create and manage dynamic in-

game personas efficiently.

Designing Quest System in Unreal Engine:

Scenario: The user seeks to construct engaging quests and narrative arcs for
player progression within the Unreal Engine environment.
Action: Leveraging the quest system module customized for Unreal Engine,

the user selects from a variety of quest templates and defines objectives,

34

rewards, and branching storylines using Unreal Engine's Blueprint visual
scripting capabilities that can be found in my framework.

Outcome: The user implements a diverse range of quests within their Unreal
Engine RPG project, enhancing player engagement and providing meaningful

gameplay experiences seamlessly within the engine.

Integrating Item and Weapon System in Unreal Engine:

Scenario: The user aims to incorporate a wide array of items and weapons,
each with distinct attributes and effects, utilizing Unreal Engine's robust
capabilities.

Action: Utilizing the item and weapon system templates customized for
Unreal Engine, the user adds various equipment types and assigns
corresponding properties using Unreal Engine's Blueprint system.

Outcome: The wuser enhances gameplay depth by introducing a
comprehensive inventory system within their Unreal Engine RPG project,
leveraging the engine's power to create immersive and customizable

equipment mechanics.

Implementing Combat System within Unreal Engine:

Scenario: The user attempts to design dynamic combat encounters leveraging
Unreal Engine's capabilities to create immersive gameplay experiences.
Action: Employing the combat system framework customized for Unreal
Engine, the user defines combat mechanics, including action selection, turn
order, and skill execution, utilizing Blueprint scripting provided in my
framework.

Outcome: The user seamlessly integrates the combat system into their Unreal
Engine RPG project, harnessing the engine's advanced features to deliver

immersive and tactical gameplay experiences for players.

35

3.1.3 Use Case Diagram

The utilization of the architectural framework within the Unreal Engine
ecosystem presents a promising avenue for solo developers and indie studio teams
alike. In this context, the actor, representing either a solo developer or a member of
an indie studio team, interacts with the framework to harness its capabilities in RPG
game development. Whether working independently or as part of a small team,
developers benefit from the framework's comprehensive suite of features, tailored

specifically for RPG creation within Unreal Engine.

RPG Architectural Framework

Character Design

<<extends>>

Framework
Initialization

------- <<extends>>.....
1 7. Quest Creation

"<<extends>>

<<extends>>
Developer .
Item & Weapon
Management

Combat
Implementation

Figure 3.1 Use Case Diagram of RPG Architectural Framework

Initializing the Framework:

As developers embark on their RPG game development journey within the
Unreal Engine environment, the first step involves initializing the architectural
framework by downloading it from the Unreal Engine Marketplace. This action is
undertaken by the developer, who accesses the framework's initialization function or

module, configures settings, and integrates it into the project.

36

Designing Characters:

With the framework in place, developers get into the process of character
design for their RPG game. Empowered by the framework's character system,
developers can craft diverse characters ranging from playable heroes to non-playable
entities and formidable enemies. Leveraging the comprehensive character creation
tools provided by the framework, developers define attributes, skills, appearances,

and behaviours, infusing life into their virtual roles.

Creating Quests:

Quest design unfolds as developers harness the capabilities of the
framework's quest system. Through intuitive quest creation tools, developers outline
quest objectives, triggers, conditions, rewards, and dialogue, meticulously sculpting
immersive quests that captivate players' imaginations and drive gameplay

progression.

Managing Items and Weapons:

The framework's item and weapon system equip developers with the tools
necessary to curate a vast array of items and weapons. Developers can manage item
types, properties, effects, equipment customization, crafting systems, and inventory
management, ensuring a unified integration of loot, gear, and equipment within their

RPG.

Implementing Combat Encounters:

Developers would compose thrilling battles and strategic skirmishes, shaping
flow of combat within their RPG realms. With access to a comprehensive suite of
combat mechanics, enemy behaviours, attack types, and Al logic, developers craft

exciting combat experiences that resonate with players and elevate immersion.

37

3.2 Functional Requirements:

This framework aims to provide game developers with a robust and flexible
toolkit for creating immersive role-playing experiences. At its core, the framework
focuses on four key components: the Character System, Quest System, Item &
Weapon System, and Combat System. With this framework, developers will have the
tools they need to bring their RPG visions to life efficiently and effectively within the

Unreal Engine ecosystem.

3.2.1 Character System Requirements:

The Character System requirements outlines the core functionalities essential
for character creation and management within the architectural framework. These
requirements are tailored to cater to the diverse needs of developers in the RPG

Genre. The character system template in my framework will be able to:

1. Create diverse playable character logic with customizable attributes,
skills, and stats, allowing users to define unique traits for each character.

2. Create assorted enemy character logic with customizable attributes, skills,
and stats, allowing users to define traits for each enemy.

3. Provide tools to customize Al behaviours for NPCs with varying roles and
personalities, enabling developers to create dynamic and lifelike non-
player characters.

4. Manage character progression, including experience points (EXP) and
character levels, allowing for customizable levelling systems and
character growth mechanics.

5. Handle equipment management through inventories, enabling characters
to acquire, equip, and manage various items and weapons as they progress

through the game.

In short, the character system template in my framework will offer pre-built
logic for playable heores, NPCs (for quest interactions or city decoration), and

enemies, providing flexibility for diverse character types.

38

3.2.2 Quest System Requirements:

In this section on Quest System Requirements, the essential functionalities
necessary for constructing captivating quests within the architectural framework is
detailed. Aligned with user needs, these requirements encompass a comprehensive

range of capabilities:

1. Crafting branching quests featuring diverse objectives and decision points
to immerse players in dynamic narratives.

2. Defining quest triggers, conditions, and corresponding rewards to
incentivize player progression and engagement.

3. Seamlessly integrating dialogue and cutscenes to enhance storytelling and
player immersion throughout the questing experience.

4. Implementing robust quest tracking mechanisms and progress indicators
to facilitate player navigation and provide clear guidance on quest

objectives and completion status.

3.2.3 Item & Weapon System Requirements:

This section delineates the essential functionalities pertaining to item and
equipment management within the architectural framework, tailored to meet user
requirements. The item and weapon system will encompass a range of capabilities,

including:

1. Providing diverse item types with distinct properties and effects, such as
quest objects, weapons, armoury, and accessories, catering to the varied
needs of RPG scenarios.

2. Creating different types of weapons such as swords, bows, daggers,
spears, magic books and so on.

3. Enabling comprehensive equipment customization and modification

options for characters, allowing for personalized gameplay experiences.

39

4. Implementing crafting and upgrading for inventory systems to facilitate
the seamless integration and management of items within the game

environment.

3.2.4 Combat System Requirements:

This section delineates the essential functionalities required for implementing
dynamic and engaging combat encounters within the architectural framework,
tailored to meet user needs. The combat system will encompass a range of

capabilities, including:

1. Supporting real-time combat mechanics suitable for open-world RPG
environments, ensuring fluid and immersive gameplay experiences.

2. Providing comprehensive logic for handling various combat actions,
including normal attacks, skills, and damage calculations, fostering
strategic depth and player choice.

3. Allowing for extensive customization of enemy behaviours, attack types
(such as slow or fast), and Al patterns, enabling developers to craft
diverse and challenging combat encounters.

4. Facilitating seamless integration of visual effects and sound design
elements to enhance the overall impact and immersion of combat

experiences, enriching the player's engagement and enjoyment.

These functionalities aim to equip developers with robust tools for creating
dynamic and compelling combat systems within their RPG projects, enhancing the

overall gameplay experience and player satisfaction.

3.3 Non-Functional Requirements

Optimizing Performance:

To ensure optimal performance, the architectural framework will prioritize
efficiency using streamlined data structures and optimized algorithms tailored to each

feature. Leveraging Unreal Engine's resource management tools, the framework will

40

meticulously manage memory allocation and deallocation to minimize overhead and
maximize runtime performance. Additionally, a component-based design approach
will facilitate modularization, enabling lightweight components for seamless

processing and rendering within the game environment.

Improving Maintainability:

For maintainability, the framework will adopt a modular design strategy,
breaking down each feature into distinct, well-defined components with clear
interfaces. Extensive documentation, including comprehensive API references and
tutorials, will empower developers to understand and maintain the framework with
ease. Robust error handling mechanisms and logging functionalities will enhance
debugging capabilities, ensuring swift resolution of issues, and minimizing

downtime.

Refining Scalability:

In terms of scalability, the framework will offer a flexible architecture that
accommodates the evolving needs of developers as their games grow in complexity
and scope. Dynamic asset loading capabilities will enable games to scale seamlessly
to larger worlds by intelligently managing asset loading and unloading based on
player proximity and other criteria. Rigorous performance testing throughout the
development process will identify and address potential bottlenecks early on,

ensuring that the framework can scale effectively under diverse conditions.

3.4 Technical Requirements

Hardware Specifications:

The framework is optimized to run on hardware configurations that adhere to
or surpass the recommended specifications for operating Unreal Engine 5. This
includes a quad-core Intel or AMD processor clocked at 2.5 GHz or higher, a
minimum of 8§ GB RAM, and a DirectX 11 or 12 compatible graphics card. Adequate

41

storage space is also required to accommodate project files and assets. Additionally,
compatibility with Vulkan API is supported for select AMD and NVIDIA graphics

cards.

Software Dependencies:

Seamless integration and functionality within Unreal Engine 5 are contingent
upon compatibility with specific software dependencies and versions. The framework
requires a Windows 10 64-bit operating system, version 1909 or higher, or Windows
11. DirectX End-User Runtimes (June 2010) are essential for DirectX runtime
support. These software dependencies ensure optimal performance and functionality
when utilizing the architectural framework for RPG development within Unreal

Engine 5.

Version Control Systems:

To maintain code integrity and facilitate collaborative development efforts, a
version control system, such as Git, will be implemented. This allows for centralized
management of project assets, seamless branching and merging of code changes, and
comprehensive tracking of project history, ensuring project stability and enabling

effective team collaboration.

Testing Methodologies:

Rigorous testing methodologies will be employed throughout the
development lifecycle to validate the functionality, performance, and reliability of
the framework. This includes comprehensive unit testing to verify individual
components, integration testing to assess system-wide interactions, and user
acceptance testing to validate end-user functionality. Automated testing frameworks
and continuous integration practices will be utilized to streamline the testing process
and identify potential issues early, ensuring the delivery of a robust and high-quality

architectural framework for RPG development within Unreal Engine 5.

42

43

CHAPTER 4
DESIGN

Chapter 4 serves as the cornerstone of the project, exploring deep into the
details of designing the RPG Architectural Framework. At its core, this chapter
clarifies the framework's fundamental features, crafted to meet the diverse needs of

game developers.

Beyond a mere conceptualization, this section delves into the technical
underpinnings of the framework, offering detailed representations and illustrations to
elucidate its inner workings. Through a systematic exploration of the framework's
key components, developers gain invaluable insights into its structure, functionality,

and implementation distinctions.

By transcending abstract theories and delving into practical design
considerations, this chapter provides a robust roadmap for translating conceptual
ideas into tangible solutions. Through a rigorous design approach, the architectural
framework is composed to empower developers with the tools they need to navigate

the complexities of RPG development seamlessly.

With a focus on user-centric design principles and technical feasibility,
Chapter 4 epitomizes the project's commitment to delivering a cutting-edge solution

that revolutionizes the landscape of RPG game development.

44

4.1 Features of the RPG Architectural Framework

In this section, the architectural framework's pivotal features are outlined,
offering developers a comprehensive overview of its capabilities. Each component of
the RPG Architectural Framework is dissected, emphasizing its unique
functionalities and contributions to the game development process by using Unreal
Engine. From the Character Designer, empowering developers to craft diverse and
customizable characters, to the Quest Creator, facilitating the creation of dynamic
and engaging quests, every feature is tailored to streamline development workflows
and enhance gameplay experiences. The Item Creator provides developers with a
versatile toolset for managing items and equipment within the game, while the
Combat Creator enables the implementation of dynamic and immersive combat

encounters.

4.1.1 Features of the Character Designer

Within the RPG Architectural Framework, the Character Designer offers
developers a versatile toolkit for crafting a diverse array of characters, including
playable heroes, enemies, and NPCs. Through streamlined Blueprint classes in

Unreal Engine 5, developers can access the following functionalities:

1. Customizable Attributes: Developers have the flexibility to define key
attributes such as Health Points (HP), Mana, and Damage Stats for each
character, influenced by factors like strength, agility, and intelligence. This
customization allows for the creation of unique and balanced heroes tailored

to various playstyles.

2. Enemy Configuration: In addition to playable heroes, developers can create
formidable enemies with adjustable HP and Damage Stats. Combat styles can
be assigned to enemies, dictating their Al behaviour and tactics during

engagements, ensuring dynamic and challenging encounters for players.

45

NPC Customization: The Character Designer enables the creation of NPCs
personalized for diverse roles within the game world. Serving as integral
quest givers, NPCs can be customized to fulfil specific narrative and

gameplay requirements, enhancing immersion and player engagement.

Progression Systems: Each character within the framework is equipped with
default level and EXP systems, allowing for seamless progression as players
traverse the game world. Developers can also fine-tune character progression
mechanics, including levelling up and acquiring new abilities, to create

rewarding gameplay experiences.

Weapon Assignment: Developers can assign weapon types to heroes or
enemies, defining their combat capabilities and playstyle. This feature
enables precise customization, ensuring that each character is equipped with

suitable weapons that complement their design and role within the game.

Combat Management: The Character Designer includes combat
management tools, facilitating the implementation of engaging combat
mechanics. From basic attacks to complex skill interactions, developers can
design intricate combat systems that offer depth and strategic depth to

gameplay.

Character Models Presets: To improve development, the framework
provides a collection of character model presets, offering a diverse selection
of visual assets for developers to choose from. These presets serve as a
foundation for character creation, accelerating the design process while

maintaining visual coherence and quality.

46

4.1.2 Features of the Quest Creator

The Quest Creator feature of the architectural framework facilitates the

integration of quest systems into RPGs by providing essential game logic and

functionality. This includes:

1.

Location Tracking: The framework enables developers to define specific
locations that players must visit to progress through quests. This functionality
streamlines quest development by allowing developers to set precise

waypoints and objectives within the game world.

Enemy Assignment: With the Quest Creator, developers can easily designate
which enemies’ players must defeat to complete quests. This feature includes
the ability to specify enemy types, spawn locations, and encounter conditions,

ensuring dynamic and engaging combat encounters throughout the game.

NPC Interaction Templates: The framework includes pre-designed
templates for NPC interactions, simplifying the implementation of dialogue
and conversation systems within quests. Developers can utilize these
templates to create branching dialogue trees, quest-giver NPCs, and
interactive story elements, enhancing the narrative depth and immersion of

the game.

By incorporating these features into the Quest Creator, the architectural

framework allows developers to integrate immersive and engaging quest systems

into their RPGs. This approach reduces development time and complexity while

providing the tools necessary to create compelling and memorable gameplay

experiences for players.

47

4.1.3 Features of the Item Creator

The Item Creator feature within the architectural framework offers robust

functionality for defining and managing various in-game items, enhancing the depth

and complexity of RPG gameplay. Key features of the Item Creator include:

1.

Weapon and Armour Logic: Developers can define game logic for RPG
weapons and armour. This includes attributes like damage, durability, and

special effects, offering flexibility for in-game equipment.

Custom Weapon Types: The Item Creator allows for creating new weapon
types, expanding the character system's arsenal. From exotic weapons to

futuristic gadgets, developers can tailor the gameplay experience.

Accessories Creation: Developers can design accessories like amulets and
rings. These enhance player stats or provide benefits during gameplay, aiding

in overcoming challenges or gaining advantages.

Quest Item Generation: With the Item Creator, developers can generate
quest items. These items range from key artifacts to mundane objects, adding

depth to quest objectives and storylines.

Inventory Integration: The Item Creator seamlessly integrates with
inventory systems. Players can manage their collected items, including

sorting, stacking, and equipping, improving the overall player experience.

By incorporating these comprehensive features into the Item Creator, the

architectural framework provides developers with the tools and flexibility to design

intricate item systems that enrich the RPG gameplay experience.

48

4.1.4 Features of the Combat Creator

There would be multiple features of the Combat Creator to assist developers

to create astonishing attacks and abilities that can be assigned in Character Designer.

The features include:

1.

Combat Style Presets: Developers have access to a variety of combat style
presets, each with unique animations and mechanics. These presets include
different attack sequences, abilities, and ultimate moves tailored for diverse
gameplay experiences. These combats can be assigned for playable heroes or

enemies in Character Designer

Custom Animation Support: The Combat Creator allows developers to
incorporate custom animations into their combat sequences. Whether it's a
signature move for a character or a unique attack animation, developers can

bring their creative vision to life.

Weapon-specific Attacks: Combat presets are aligned with weapon types,
ensuring that each character's combat style is cohesive and thematically
appropriate. Normal attacks, special abilities, and ultimate moves are
designed to complement the chosen weapon type, enhancing immersion and

gameplay depth.

Damage and Mana Systems: Developers can utilize the Combat Creator to
fine-tune the game's damage and mana systems. This includes adjusting
damage scaling, hit detection mechanics, and mana cost for abilities, offering

precise control over combat balance and dynamics.

49

4.2 Technical Representations

4.2.1 Entity Relationships Diagram

Weapon Type
/ < Stats

Level

Combat

Enemy \ / L/

%)

Is Related

Playable

Creates Rewards

-
3 (o

/
e / Coom >
Combat = /A / —
5 Triggers
Creator @oﬂ@) ; \

Equipment Slots
e

Queﬁ—

Character
Designer Quest Name
Item Creator Quest C’EGIOYMQ“E

Armou |
e 2 e

\\\/\ J L
Creates Quest Objects po- Influences

— i 8

Figure 4.1 Entity Relationships Diagram of the RPG Architectural Framework

Based on the Figure 4.1 Entity Relationships Diagram of the RPG
Architectural Framework offers a visual representation of the RPG Architectural
Framework, illustrating the intricate relationships between its components. Designed
to empower game developers utilizing Unreal Engine in crafting immersive RPG

experiences, this framework encompasses several key features:

Character Designer: This component enables developers to create a diverse
range of characters, including playable heroes, enemies, and NPCs, each with
customizable attributes such as name, EXP & Level, HP, Mana, and Damage Stats.

Through intuitive tools provided by the Character Designer, developers can define

50

the characteristics and behaviours of their characters, enriching the gameplay

experience.

Quest Creator: The Quest Creator empowers developers to design engaging
quests within their RPG games. From defining quest objectives and triggers to
scripting dialogue and cutscenes, this feature facilitates the creation of dynamic and
compelling narrative experiences. Quests created using this tool can drive the

progression of the game and immerse players in its richly crafted world.

Combat Creator: With the Combat Creator, developers can design and
implement thrilling combat encounters tailored to their game's design and setting.
This feature allows for the creation of diverse combat styles, abilities, and enemy
behaviours, enabling developers to craft challenging and strategic gameplay
experiences. By integrating the Combat Creator into their projects, developers can

elevate the intensity and excitement of combat within their RPG games.

Item Creator: The Item Creator component provides developers with the
tools to populate their RPG worlds with a variety of items and equipment. From
weapons and armour to accessories and quest objects, developers can define the
properties and functionalities of each item, enriching the gameplay with strategic
choices and rewards. The Item Creator also includes presets for inventory
management, allowing developers to seamlessly integrate items into their game's

economy and progression systems.

From character customization to quest design, combat mechanics, and item
management, this framework provides a comprehensive suite of tools and features to
support developers in realizing their creative visions and captivating players with

unforgettable adventures.

51

4.2.2 Flow Chart for Character Designer

(Start Character Creation)

Input Customed

Use framework’s
Character 3D Model

default model?

Creating an
NPC?

Creating a

Creating an
Playable Hero? Enemy?

Input Customed
Mathematical EXP
and Level Formula

Customizing
EXP and Level
System?

Define NPC Name,
Location Spot

Assign Default Assign Customed Custom Input Customed and
EXP and Level EXP and Level Idle Animation? Assign Idle Animation
System System
Define Hero Name, Base Define Enemy Type, Base : 7
HP, Base Mana, and HP, Base Damage Stat and Aasign ke fnmnation from ki ge"'f;’
Base Damage Stat Level WERRE T 199eS 2 any (e

No

Yes
Custom .
Weapon Type? { Go To Item Creation

No
Assign Available Preset £
Weapon Type User v‘\}ss‘g“nﬁ“s“”{‘f"
(Sword, Bow, Mage, Heavy)| SOmLYPS Caer

No
Do you have
combat styles?

Yes

Assign Combat Styles
Matching with
Weapon Type on the Hero

Assign on an
Enemy?

. Assign Default
Assign Combat Styles
to the Enemy Character WeaponS ,aung Armory

Figure 4.2 Flow Chart of Character Creation with Character Designer

52

(GotoQuestCreation)

Based on Figure 4.2 Flow Chart of Character Creation with Character
Designer illustrates the step-by-step process for developers to create characters

within the RPG Architectural Framework:

e Input Custom 3D Character Model: Developers have the option to input
their own custom 3D character models into the framework, providing
flexibility in character design and visual representation.

e Character Type Selection: The flowchart depicts the selection process for
creating various character types, including heroes, enemies, or NPCs.
Developers can choose the appropriate character type based on their intended
role in the game.

e Level System Specification: Developers have the flexibility to utilize either
the default level system provided by the framework or implement a custom
level system tailored to their specific game mechanics and progression
design.

o Attribute Definition: Developers define the attributes of the character, such
as HP, Mana, and Damage Stats, which contribute to their overall capabilities
and performance within the game world.

e Weapon Type Assignment: Developers assign weapon types to the
character, determining the weapons they can wield and the associated combat
styles available to them.

e Combat Style Assignment: Developers select from a range of available
combat styles and assign them to the character, influencing their fighting

techniques and strategies during combat encounters.

Weapon and Armory Slot Assignment: Finally, developers allocate default weapon
and armory slots to the character, allowing them to equip various weapons and armor

to enhance their combat effectiveness and customization options.

53

CHAPTER 5
IMPLEMENTATION

5.1 Technical Implementation

The cornerstone of the RPG framework's development lies in Unreal Engine
5's Blueprint system. Unlike traditional coding, Blueprints offer a visual scripting
approach, where developers construct game mechanics and systems by connecting
nodes and functions within a user-friendly interface. This intuitive environment
empowers even those with limited coding experience to create complex

functionalities.

Blueprints boast a vast library of pre-built nodes, each serving a specific
purpose. This extensive toolkit allows the framework to handle diverse RPG
elements through visual scripting. Developers can utilize Blueprints to craft intricate
character creation systems, where players can customize their avatars. Similarly,
quest generation and management become streamlined processes with Blueprints,
allowing for the creation of engaging narrative experiences within the game.
Furthermore, item management and inventory functionalities become readily
achievable through Blueprint scripting. The framework even leverages Blueprints
for crafting combat mechanics, enabling developers to design dynamic attack

sequences and responsive battle systems.

The decision to prioritize Blueprints brings several advantages to the
development process. First and foremost, the visual nature of Blueprints simplifies
game development. Without the need for extensive coding knowledge, developers
can quickly grasp the functionality of each node and construct complex systems with
relative ease. This emphasis on user-friendliness opens the framework to a wider
range of developers, fostering creativity and innovation. Additionally, Blueprints
excel in rapid prototyping. By visually connecting nodes, developers can test new
ideas and mechanics swiftly, allowing for faster iteration and refinement during

development. The extensive library of pre-built nodes further contributes to

54

development efficiency. By leveraging these pre-built functionalities, developers can
avoid reinventing the wheel, saving valuable time and resources. Ultimately, by
prioritizing Blueprints, the framework achieves a streamlined development process,

leading to faster creation cycles and RPG experience.

5.2 Development Process

The conceptual design phase involved making critical design choices for the
character system, combat system, quest system, and item system. Diagrams and
flowcharts in chapter 4 were created to visualize the structure and flow of these
components, ensuring a cohesive framework. Detailed design documents are

available in the appendix for reference.

My journey with Blueprints involved referring to Unreal Engine 5
documentation, engaging with community forums, and watching numerous YouTube
tutorials. These resources provided comprehensive guidance on using Blueprints
effectively. Utilizing Blueprints significantly reduced development time compared to
hardcoding in C++. The visual nature of Blueprints simplifies the creation and

management of game logic, making it an ideal choice for this project.

The integration process involved combining different components of the
framework seamlessly. Manual testing was conducted extensively to ensure each
system functioned correctly and interacted as expected. Potential automated testing
methods were considered for future implementation to streamline the testing process

further.

55

5.3 System Implementation Details
5.3.1 Character System Framework

The character system framework is a crucial part of any RPG, as it manages
the player's attributes and progression. In this project, the BPC_ CharacterStat
Blueprint Class was designed to handle various character attributes, including
experience points (EXP), level, health points (HP), and mana. This class contains
several functions to modify these attributes based on in-game events, ensuring a

dynamic and engaging gameplay experience.

BPC_CharacterStat Blueprint Class

e Increase Max Health

Increase Max Health

SET

=D D

Upgrade Health @ ® Max Health

Max Health @ Add pin ®

Figure 5.1 Increase Max Health Function

The function to increase max health is visually represented using a node setup
in the Blueprint system. This setup allows the game to increase the character's
maximum health based on a specified input value, providing a clear and efficient way
to manage health upgrades within the game. Figure 5.1 Increase Max Health
Function demonstrates the specific nodes and connections used to implement the

increase in max health.

56

e Increase EXP

Figure 5.2 Increase EXP Function

The process of adding EXP to a character is illustrated through a Blueprint
diagram. When a character gains experience, this function updates the current EXP
and checks if the character has enough EXP to level up. If so, a while loop is used to
handle large EXP gains, ensuring the character's level is accurately updated. Figure
5.2 Increase EXP Function shows the node setup for adding and managing EXP,

including the logic for handling level ups.

e Increase Level:

Figure 5.3 Increase Level Function

This function details how the character's level is updated and how this affects
other stats such as max EXP, max health, max mana, attack stat, and defense stat. By

incrementing the level, the character's overall power and capabilities are enhanced.

57

Figure 5.3 Increase Level Function provides a visual representation of the level-up

process, highlighting the interconnectedness of different character attributes.

& increase Atiack Stat

rm" x .7

ddes [50]

& SetFull Health

Figure 5.4 EventGraph of BPC_CharacterStat

The EventGraph within the BPC CharacterStat class initializes the
character's stats based on the current level when the game begins. This initialization
ensures that all character attributes are set correctly at the start of gameplay. Figure
5.4 EventGraph of BPC CharacterStat demonstrates the initialization logic within
the EventGraph, showing how various nodes work together to set up the character's

initial stats.

58

BP_ThirdPersonHero Blueprint Class

MainHUD >«

Figure 5.5 BPC _ThirdPersonHero Viewport

The BP_ThirdPersonHero class represents the player-controlled character. It
includes essential functionalities such as death and respawn logic, ensuring that the
player has a seamless experience. This class serves as the primary blueprint for

player interactions and character management within the game.

User Interface (UI) for Character System:

PRIMITIVE
SPECIAL EFFECTS

1] "Text Block
ana Text] “Text Block

[B] Inventory

Figure 5.6 Main_ HUD Designer Mode

The Main HUD widget blueprint is designed to display essential character
stats, including HP, mana, level, and EXP. This UI provides players with real-time

59

information about their character's status, enhancing the overall gameplay
experience. Figure 5.6 Main_ HUD Designer Modeshows the Ul elements within the

Main_HUD widget, illustrating how character stats are presented to the player.

S SetText (Text)

Figure 5.7 Setting UI Event

This function connects character stats to Ul text elements, ensuring that the
displayed information is accurate and up-to-date. Figure 5.7 Setting UI EventThis
image demonstrates how the current mana value is connected to the corresponding
text element in the Ul This function links character stats to Ul percentage bars, such
as health and mana bars, providing a visual representation of the character's status.
Figure 5.7 Setting UI Event shows the logic for updating the mana bar percentage,
highlighting the connection between character stats and their visual representation in

the UL

60

Enemy Al

Blackboard (asset: BB_EnemyBase)™™ BT =~
AttackTarget:Note
PointOfinterest: (invg
SelfActor: BP_Dumix AID_C87F546A01F720FE01_1323835016
State: Passive

Figure 5.8 Enemy Al Radius HitBox

One of the foundational elements of Al behaviour in Unreal Engine 5 is the
use of detection hitboxes, which are visual representations of the Al's perception
ranges. These hitboxes define the zones within which the Al can detect various
stimuli such as sight and sound. As depicted in the accompanying figure, three

distinct colors represent different types of perception ranges: green, pink, and yellow.

The green radius represents the Al's sight range, known as Al Sight Config.
This is a visual trigger that allows the Al to perceive objects or characters within its
line of sight. When an enemy Al detects the player or any other object within this
range, it can trigger a variety of responses, such as engaging in combat, issuing an
alert, or changing its patrol route. The setup of Al Sight Config involves specifying

parameters such as sight radius, peripheral vision angle, and the detection logic.

61

The pink radius indicates the lose sight radius. If the player exits the green
sight zone and enters the pink zone, the Al will eventually lose sight of the player.
This triggers a different set of behaviours, typically causing the Al to abandon its
pursuit and return to its default state, such as patrolling or guarding a specific area.
This mechanic is essential for creating realistic and fair Al behaviour, ensuring that

players have opportunities to evade detection and plan strategic manoeuvres.

The yellow radius is associated with Al Sense Hearing, which enables the Al
to detect sounds generated by the player or other sources. Actions such as running,
firing a weapon, or interacting with objects can produce sounds that alert the Al to
the player's presence. Upon detecting a sound within this radius, the Al will move
towards the source of the noise to investigate. If the player manages to escape
without being seen, the Al will eventually forget about the incident and resume its

original behaviour after a short duration.

StandardMacros

Figure 5.9 Enemy Al Reference Flow

While the perception systems define how the Al detects provocations, the
actual logic dictating the Al's responses to these stimuli is implemented through
Blueprints. In my project, most of this logic is encapsulated within a custom Al
controller class named AIC_EnemyBase. This class contains the rules and procedures

that govern how the Al reacts to different types of detections.

62

5.3.2 Combat System Framework

The combat system is a fundamental aspect of RPG gameplay, providing
players with engaging and dynamic interactions. The combat system in this project
includes various attack combos, projectile abilities, and area-of-effect (AOE)

abilities, each implemented using Unreal Engine 5's Blueprint system.

Attack Combos

Figure 5.10 Attack 1 Animation Montage

63

Figure 5.11 Attack 1 Animation Implementation

The combat system features four primary attack combos: a slash, a stab, a
kick, and a slam. These actions are named as Attack 1, Attack 2, Attack 3 and Attack
4 respectively. These combos provide a range of offensive options for the player,
enhancing the combat experience. Figure 5.10 Attack 1 Animation Montage displays
the first attack animation, complete with visual effects (VFX), demonstrating the
dynamic nature of combat animations. Figure 5.9 Attack 1 Animation
Implementation shows how the animation montage of Attack 1 is applied. Other

attacks are applied in the same way.

Figure 5.12 Sphere Tracing to Detect Enemies

Each attack is implemented sphere tracing to detect enemies. Sphere tracing

allows for precise hit detection, ensuring that attacks accurately register hits on

64

enemies. Figure 5.10 Sphere Tracing to Detect Enemies shows the logic for detecting
hits and applying damage to actors tagged as "Damageable." This setup ensures that

only valid targets are affected by the player's attacks.

BP_Dummy Blueprint

7 SetVisiity

7 Play Anim Montage

Y < \
Target »
New Vishiity Target [seif

LENGTH

f Decrease Health

Figure 5.14 Continuation of Event AnyDamage for BP_Dummy Blueprint

65

The BP_Dummy class serves as a target enemy for testing combat mechanics.
It includes logic for damage detection and health bar visibility, providing a
straightforward way to test and refine the combat system. Figure 5.13 Event
AnyDamage for BP_ Dummy Blueprint and Figure 5.14 Continuation of Event
AnyDamage for BP_ Dummy Blueprint demonstrates the damage detection and

health bar visibility logic within the BP_ Dummy class.

Projectile and AOE Abilities

© BP_Projectile_FireBall (Self)
% B

FUNCTION

MACROS

VARIABLES

EVENT DISPATCHERS

Figure 5.15 BP_Projectile Fireball Viewport

This class is a child of the BP_ProjectilesBase class, specifically designed for
projectile abilities. This is practiced so that any projectile abilities that would be
created in the future can be created as the child class of the base class. The
BP_Projectile_Fireball is an ability that can be performed as the Hero Character by
pressing Q on the keyboard. The logic is by calling on hit, and if the Hit Actor has
the Damageable tag, the actor will receive damage and reduce its health, just like the
attack swings. Figure 5.15 BP_Projectile Fireball Viewport illustrates the setup for
the fireball projectile, highlighting its unique properties and behaviours.

66

Figure 5.16 BP_AOE Firelornado

This class is a child of the BP_ AOE Base DamageOverTime class, designed
for AOE abilities that cause damage over time. The base class has the logic of
applying damage over time by using Set Timer by Event default unreal function and
connecting it to an event that applies damage on an actor with the tag "Damageable".
The Timer is set to 0.5 seconds, that means the damage would be applied every 0.5
seconds thus giving the Damage Over Time effect. The fire tornado ability provides a
powerful and visually impressive AOE attack, this can be done by pressing the
keyboard button E. Figure 5.16 BP_ AOE FireTornado shows the setup for the fire

tornado ability, emphasizing its damage-over-time properties and VFX.

67

5.3.3 Quest System Framework

The quest system is a core component of RPGs, providing players with

objectives and goals to achieve. This project implements a solid quest system using

numerous blueprint classes and structures.

Figure 5.17 Quest System Related Files

The quest system is organized using several blueprint classes, including
Widget Blueprints for the UI, Actor Blueprints for location triggers, and structure
files for quest data. This organization ensures a clear and manageable framework for
quest implementation. Figure 5.17 Quest System Related Files shows the
organization of quest-related files, highlighting the various blueprint classes and

structures used in the quest system.

68

Available Quests

Quest Name

Description

Accept Quest

Figure 5.18 WB_Quest List Ul Designer

The WB_QuestList widget blueprint manages the quest list interface,
allowing players to view and accept quests. Figure 5.18 WB_Quest List UI Designer
displays the quest list Ul, providing a visual representation of the available quests.
The UI of the quest list that would appear once the player interacts with the quest
NPC by pressing the button F. The quest selected would be accepted when the
Accept Quest button is clicked.

Figure 5.19 Blueprint Graph of WB_QuestList

69

The blueprint graph of WB_QuestList demonstrates the logic for selecting
and accepting quests, ensuring that the quest system functions smoothly and
intuitively for the player. Figure 5.19 Blueprint Graph of WB_QuestList shows the
logic for selecting and accepting quests within the WB_QuestList blueprint,
highlighting the connections and nodes involved in quest management. Quest item
itself is stored in a structure Blueprint class. Structure Blueprint allows developers to
store data in their own desired customized variables. Quest objectives are stored in
arrays and updated based on player actions, ensuring that the quest system accurately

tracks progress and completion.

Elimination

Kill the 3 Enemies behind this wall

Figure 5.20 Quest View Ul

70

Figure 5.20 Quest View Ul illustrates how quest objectives are tracked and
marked as completed, providing a clear and efficient way to manage quest progress.
Once a quest is accepted, there would be the quest name and objectives that would
appear on the right side of the screen. The quest objectives are stored in the form of
array as mentioned earlier. When it comes to location related objective, the location
trigger box would be the actor to sense any character that enters the box and tick the
objective itself and marked as completed. When it comes to eliminating enemies in
an objective, every time an enemy is killed, the game will check whether the enemy
itself is related to a quest or not. If it is, then the enemy actor that is stored in an array
of actors within the objective will be reduced by 1. Once it’s reduced to 0, the

objective that is related to killing enemies will be ticked and mark as completed.

Quest NPC

Details

| @ BP_QuestNPC

Figure 5.21 Quest NPC
The Quest NPC serves as a pivotal component in creating an immersive and
interactive RPG experience. This NPC acts as a conduit for players to receive, track,
and complete quests, thereby driving the narrative and providing a structured path for

gameplay.

71

When a Quest NPC is placed into the game world, developers have access to
a streamlined process for configuring quests through the details panel on the right
side of the Unreal Engine editor. This panel offers a user-friendly interface where
developers can populate various attributes related to quests, ensuring that the NPC

can effectively interact with players and provide them with tasks to complete.

The Quest List is an integral part of the Quest NPC's setup. Within the details
panel, developers can add multiple quests to this list. Each quest entry can be

configured with the following attributes:

e Name: The name of the quest, which is displayed to the player when they
interact with the Quest NPC.

e Description: A detailed description of the quest, providing players with
context and narrative background.

e Secondary: Additional information or secondary objectives that might be part
of the quest.

e Completed: A flag indicating whether the quest has been completed, used to
track progress and trigger subsequent events or rewards.

e Objectives: A comprehensive list of tasks that players must complete to finish
the quest. These tasks can involve eliminating specific enemies or reaching

certain locations.

The Objectives index is where developers can specify the exact requirements
for completing a quest. Developers can list the enemies that need to be defeated.
Each enemy type or specific enemy can be added to the objectives index, ensuring
that the quest tracking system can accurately monitor the player's progress. For
quests that require players to visit certain locations, developers can use the
BP_LocationTrigger blueprint. This blueprint acts as a trigger point that players must
reach to complete the location-based objective. Developers can place
BP_LocationTrigger actors within the game world and then link these triggers to the

relevant objectives in the Quest NPC's details panel.

72

5.3.4 Item System Framework

The item system is an essential part of RPGs, allowing players to collect,
equip, and use various items to enhance their characters. This project implements a

comprehensive item system using several blueprint classes.

=% /Game/BlueprintFramework/ItemSystem/BPC_Equipping

BP_ThirdPersonHero

.
IR EquipmentMent
putacion

1

BP_ThirdPersonHero

TAlAferact
putacion

BPC_Equipping

-

DT_ltemData

., S.Slots
2 Uleostedstrct

WB_EquipmentUserinterface

Figure 5.22 BPC Equipping Reference Viewer

The item system includes various blueprint classes, such as BP_ Weapon for
weapons and DT ItemData for item data. These classes are organized to ensure
efficient management and implementation of items. Figure 5.22 BPC_Equipping
Reference Viewer shows the reference flow of item-related files, highlighting the

various blueprint classes used in the item system.

Items are categorized using enumerators, with current categories including

Sword, Spear, Mage, Archer, Bracelets, Armours, Amulets, and Rings. This

73

categorization allows for easy management and access to different types of items
within the game. The BPC Equipping blueprint class handles equipping items and
accessing the equipment Ul This class ensures that players can easily equip and

manage their items, enhancing the overall gameplay experience.

One of the most compelling reasons for prioritizing development with
Blueprints in Unreal Engine 5 is the simplicity and efficiency they offer. Blueprints
allow developers to create intricate gameplay mechanics using a visual interface
where logic is represented with nodes and lines of connection. This visual approach
makes it easier to understand and manage complex systems, reducing the likelihood
of errors and increasing productivity. For instance, in my project, the high amount of
logic needed for character attributes, combat mechanics, quest systems, and item
management is efficiently handled with a relatively small number of nodes and
connections. This streamlined approach contrasts sharply with traditional coding,
where such complexity would require extensive lines of code and intricate

debugging.

The visual nature of Blueprints also enhances accessibility, enabling
individuals without extensive programming knowledge to participate in game
development. This democratization of game development means that artists,
designers, and other team members can contribute more directly to the creation of
game mechanics and features. Blueprints facilitate collaboration by providing a
common, intuitive platform that all team members can understand and manipulate. In
the context of my FYP, this accessibility allowed for a more collaborative approach
to developing the various RPG systems, ensuring that each aspect of the game could

be fine-tuned and perfected by experts in different fields.

74

CHAPTER 6
TESTING

This chapter is about the testing methodologies and results of the RPG
framework developed in Unreal Engine 5 using Blueprints. The purpose of this RPG
framework is to provide a comprehensive architectural structure for various RPG
fundamentals, including character, combat, quest, and item systems, thus enabling
the creation of engaging and interactive RPG experiences. By using a systematic
testing approach, we aim to ensure that the framework functions as intended and

delivers a vigorous and user-friendly development environment.

6.1 Testing Plan and Execution

The testing process for the RPG framework is divided into several phases:
functional testing, integration testing, and usability testing. Each phase targets
different aspects of the framework to verify its functionality, interaction, and user-

friendliness.

6.1.1 Functional Testing

Functional testing focuses on verifying that each individual feature and
functionality within the framework operates as intended. The following specific

functionalities were meticulously tested:

Character Stat Calculations

The system was tested to ensure that leveling up appropriately increases
various stats, including maximum HP, maximum mana, experience points, attack,
and defense. Each of these increases was verified to be accurate based on the

mathematical functions integrated into the system.

75

Additionally, the accuracy of character stats was confirmed to be precise,
reflecting the correct calculations within the function scripts. The player Ul was
scrutinized to ensure it accurately displayed the level, experience points, mana, and
HP, thereby providing the player with reliable and up-to-date information about their

character.

Enemy Al

Rigorous tests were conducted to verify that the enemy Al detects, chases,
and interacts with the player correctly. This involved ensuring that the Al behaves as
expected within the defined sight and hearing radii, reacting to the player's presence
and actions appropriately. The correct functioning of enemy death triggers was

confirmed, ensuring that the system responds accurately when an enemy is defeated.

Player Mechanics

Player death and respawn functions were thoroughly tested to confirm that
they work as intended. This included verifying that the player character respawns
correctly after death, with a brief delay to enhance gameplay realism. The item
equipping system was tested to ensure that equipping and changing sword models

function correctly, reflecting the appropriate visual and statistical changes.

Quest System

Quest acceptance, NPC interactions, and quest Ul functionality were
examined to confirm that the quest system operates smoothly. This involved
verifying that quests could be accepted, tracked, and completed accurately. Quest
location triggers and enemy elimination objectives were tested to ensure they
function as expected, providing the player with clear and achievable objectives.
Completing all quest objectives was verified to lead to successful quest completion,

thereby rewarding the player appropriately.

76

Item Equipping

The item equipping system was scrutinized to ensure that equipping different
items accurately updates the player’s stats. This involved verifying that the
appropriate stat changes were reflected in the player’s attributes. The equipment Ul
was tested to ensure it displayed accurate stats and item details, providing the player

with a clear and informative interface.

6.1.2 Integration Testing

Integration testing focuses on ensuring that different components within the
framework interact seamlessly and exchange data correctly. The following

interactions were tested to confirm their functionality:

Character and Combat System

Tests were conducted to verify that character attack stats accurately affect
ability damage and sword attack damage. This involved ensuring that the damage
calculations reflect the correct attack stats of the character. Enemy damage reception
was inspected to confirm that enemies take accurate damage based on the player’s
attack stats. This ensured that combat interactions were realistic and balanced. The
system was tested to ensure that equipping different swords updates the attack stats

correctly, providing the player with the intended combat advantages.

Quest and Combat System

The interaction between the quest and combat systems was tested to verify
that completing quests grants experience points accurately. This involved ensuring
that the quest completion logic was correctly integrated with the experience point
system. The system was examined to confirm that eliminating enemies provides
experience points as intended, rewarding the player for their combat efforts. Mana
consumption during ability usage was tested to ensure that abilities consume the
correct amount of mana. Additionally, scenarios where the player has insufficient

mana were tested to confirm that the system handles these situations properly.

77

6.1.3 Usability Testing

Usability testing evaluates the framework's user-friendliness and intuitiveness
from a developer’s perspective. The following steps were taken to ensure the

framework's usability.

A fresh Unreal Engine project was created, and the architectural framework
was integrated. This process involved applying the character system and placing the
hero in the blank project. Enemy Al, including the NAV mesh, was added to the
project, and character stats were tested to confirm their accuracy and functionality.
The combat system was integrated and tested to verify damage calculations and
attack functionality. This involved ensuring that the combat mechanics were realistic

and responsive.

Quest NPCs were added to the blank project, and objectives were set up. This
included configuring quest elimination and location triggers to ensure they
functioned correctly. The quest system was tested to verify that it accurately tracked
and completed objectives, providing the player with clear and achievable goals. The
item functionality was integrated and tested to ensure that equipping items updated
the player’s stats accurately. This involved verifying that the appropriate stat changes

were reflected in the player’s attributes.

6.2 Results Analysis and Discussion

The testing process involved playing the game and systematically testing
each functionality. For complex logic, such as quest objective completion, debug
prints were used to verify the execution of scripts. For instance, quest location
triggers were configured to print "user has entered," and enemy kills were tracked by
printing the length of the array, ensuring that the system accurately monitored

objective completion.

78

6.2.1 Test Results

The results of the functional, integration, and usability tests are presented

below in a comprehensive manner:

Table 6.1 Test Cases Results

Test Case Status Notes

Character stat calculations | Pass Stats updated accurately with leveling up.

Player Ul Pass Displayed correct level, experience points, mana,
and HP.

Enemy Al functionality Pass Detected and interacted with the player correctly.

Player death and respawn Pass Respawned correctly after death with a delay.

Combat Attacks Pass Sword Swings are applied correctly

Attack Tracing Pass Attack Trace works but needs improvement

Damage System Pass Enemy can take damage correctly according to
the Attack Stats of player

Abilities Pass Projectiles and AOE skills works accordingly
with the damage

Visual effects for abilities Pass Visual effects triggered correctly for different
abilities, enhancing gameplay immersion.

Quest acceptance and NPC | Pass Quests accepted and tracked correctly.

interactions

Quest UI functionality Pass Displayed quest details accurately.

Quest location triggers Pass Triggered correctly upon player entry.

Quest enemy elimination Pass Tracked enemy kills accurately and completed
quests upon fulfilling objectives.

Item equipping Pass Updated player stats and displayed correct sword
models.

Equipment UI functionality | Pass Displayed accurate stats and item details.

Inventory management Pass Inventory UI and functionality worked correctly,
allowing item pickup and use

Integration of character and | Pass Attack stats affected damage calculations

combat system correctly.

Quest and combat system | Pass Quests granted experience points upon

interaction completion.

79

Ability mana consumption | Pass Mana was consumed correctly, and insufficient

mana scenarios were handled properly.

Sound triggers for abilities | Pass Sound effects played correctly based on player
and actions actions and abilities.

UI responsiveness and | Pass Ul elements updated in real-time, reflecting
updates changes in character stats, quest progress, and

inventory accordingly

6.2.2 Encountered Issues and Bug Fixes

During the testing process, several issues were encountered, each requiring

specific solutions.

Enemy Al:

Initial implementation caused enemies to chase the player indefinitely, failing to
return to their default state.
Solution: Adjusted the Al behavior tree and logic to include a lose sight radius,

allowing enemies to return to their default state when the player is out of range.

Player Respawn:

Respawn logic had multiple issues, particularly with resetting stats and position.
Solution: Instead of destroying the actor, the approach was modified to disable input
and enable physics, allowing the character to fall off the map. Following a delay, the

character respawns at a designated spawn point with input re-enabled.

Quest Objective Tracking:

Arrays did not reduce properly for enemy elimination objectives, causing incorrect
tracking of enemy Kkills.
Solution: Refined the array reduction logic to track kills accurately, ensuring quest

completion upon fulfilling objectives.

80

Item Stat Updates:

Issues with item stat updates not reversing correctly when switching items, leading to
incorrect stat calculations.

Solution: Implemented a reverse function to handle stat updates when changing items
and adjusted the leveling up logic to add stats instead of setting them, ensuring

accurate stat tracking.

Attack Tracing:

Attack tracing detected only one enemy even if multiple enemies were within the

hitbox.

Status: Issue remains unresolved, requiring further investigation and refinement.

6.2.3 Overall Analysis

The testing process was largely successful, with most functionalities working
as intended. The primary issues that remain unresolved pertain to attack tracing and
combo handling. Despite these challenges, the framework provides a solid

foundation for RPG development, with a user-friendly and flexible architecture.

There are few unresolved issues, such as attack tracing detects only one
enemy at a time, even when multiple enemies are within the hitbox. Rapid clicking

for attacks skips combo sequences, requiring a specific click pace.

From a developer’s perspective, the framework is functional but not as
smooth as anticipated. While it effectively facilitates RPG creation, there are areas
where the user experience could be improved. On a scale of 1 to 10, with 10 being
the smoothest experience akin to popular RPGs like Genshin Impact or Wuthering

Waves, the final product of this RPG Architectural Framework is rated at 7.

81

CHAPTER 7 CONCLUSION

The development of the RPG framework through Unreal Engine 5 has been a
comprehensive and insightful journey, culminating in the successful production of
four key systems: Character System, Combat System, Quest System, and Item
System. Each of these systems has been meticulously crafted to enhance the

functionality and user experience of RPG development.

1. Character System

The Character System was designed to handle all character-related
functionalities, including stat calculations, levelling up, health, mana, and experience
management. The system allows for dynamic updates to character stats based on

player actions and item equipping, ensuring a responsive gameplay experience.

2. Combat System

The Combat System encompasses all combat-related mechanics, from basic
attacks to special abilities. This system integrates seamlessly with the Character
System, ensuring that attack stats and abilities accurately reflect the character's
current state. The system also includes enemy Al logic, allowing for challenging and

engaging combat scenarios.

3. Quest System

The Quest System enables the creation and management of various quests
within the game. This system supports multiple quest types, including enemy
elimination and location-based objectives. It also integrates with the Quest NPC and
location triggers, providing a cohesive questing experience that tracks and updates

quest progress in real-time.

82

4. Item System

The Item System manages all aspects of item creation, equipping, and stat
modification. This system ensures that items correctly affect character stats and are
visually represented in the game world. It also includes functionality for updating the

Equipment Ul, allowing players to easily manage their inventory and equipped items.

7.1 Evaluation of Project Objectives

Conclusion of Objective 1: Develop a Character Designer

The first objective was to create a robust character design system that allows
for customizable character stats, levelling, and UIl. This system aimed to ensure
scalability and maintainability, capable of handling a variety of character types and
abilities. This objective was successfully achieved. The character design system
developed is highly flexible, allowing for detailed customization and efficient
management of character stats and progression. The integration of the system with
Unreal Engine's Blueprint system ensured ease of use and adaptability. However,
there are still areas for improvement, such as enhancing the user interface and adding

more complex character abilities and traits.

Conclusion of Objective 2: Develop a Quest Generator

The second objective focused on building a flexible quest generation system
that enables the creation of complex quest lines with NPC interactions and objective
tracking. This system was designed to maintain high performance even as the
number of quests and interactions increases. This objective was also successfully
achieved. The quest generator developed can create dialogues with NPC interactions
and objective tracking. Performance optimization was a key consideration, and the
system handled an increasing number of quests efficiently. Future work could include
refining the complexity of quests and improving the user interface for better quest

management.

83

Conclusion of Objective 3: Develop an Item Creator

The third objective was to implement an item creation system that supports
diverse item types, equipping mechanics, and inventory management. This system
needed to be scalable to accommodate a large number of items and ensure ease of
maintenance. This objective was achieved, resulting in a comprehensive item creator
that supports a wide variety of item types and seamless inventory management. The
system's scalability was ensured through efficient data management practices. Future
enhancements could involve adding more item types, improving the equipping

mechanics, and refining the inventory Ul for better user experience.

Conclusion of Objective 4: Develop a Combat Creator

The fourth objective was to establish a modular combat system with
customizable attack and defence logic. This system was optimized for performance
and designed to integrate seamlessly with the character and item systems. This
objective was successfully met, with the development of a versatile combat system
that allows for detailed customization of combat mechanics. The integration with the
character and item systems was smooth, and performance remained high even during
intensive combat scenarios. However, further work is needed to refine combat

animations, enhance enemy Al, and implement more sophisticated combat strategies.

Conclusion of Objective 5: Implement a Playable RPG Prototype

The final objective was to implement a playable RPG prototype using the
custom-made framework, showcasing the framework's functionality and user
experience. This prototype was also intended to evaluate scalability, maintainability,
and performance. This objective was achieved to a considerable extent. A functional
RPG prototype was created, demonstrating the core capabilities of the developed
framework. The prototype provided a good user experience but was relatively small
in scale. Future work involves expanding the game's content, improving the Al

behavior, and addressing minor bugs that were identified during testing.

84

7.2 Major Learnings from the Project

Throughout the project, several valuable lessons and skills were acquired:

e Game Development with Unreal Engine: Gained in-depth knowledge of Unreal
Engine 5, including its Blueprint system and various development tools.

e Time Management: Learned the importance of effective time management to
meet project milestones and deadlines.

e Logical and Problem-Solving Skills: Enhanced logical thinking and problem-
solving abilities through the development and debugging of complex game
mechanics.

e Productivity: Improved productivity by optimizing workflows and utilizing
Unreal Engine's features efficiently.

e User Requirements Solution: Developed a keen understanding of user
requirements and how to translate them into functional game features.

e Staying Updated with Technology: Recognized the importance of staying up-to-
date with the Ilatest technological advancements, particularly in game

development.

7.3 Remaining Work, Potential Improvements and Future Plans

While significant progress has been made, there are still areas that require

further development and enhancement:

e Implement logic to allow attack sequences to follow spam clicks smoothly.

e Add more character weapon styles to increase variety.

e Integrate new animation retargeting features in Unreal Engine 5.4 for abilities.

e Fix issues with enemy Al attacking each other and forgetting perception triggers.
e Expand the item system to include more items and display item names above

boxes.

85

Potential Enhancements

e Introduce more abilities and skills with cooldown reduction features.

e Add a wider range of attack and skill animations.

e Implement dialogue animations for a more immersive experience.

e Increase the variety of NPCs for decoration and interaction.

o Expand the stats system to include more complex attributes like crit rate, crit
damage, movement speed, and attack speed.

e Develop a more visually appealing and user-friendly interface.

e Add more item categories and introduce crafting or blacksmithing systems.

e Enhance character progression with additional upgrade options.

e Enhance the character design system with more complex abilities

e Refining the quest generator to handle more intricate quest scenarios and
improve the user interface.

e Improving the combat system with better animations, advanced Al, and more

combat strategies.

Future Plans for the Software Package

Looking ahead, there are plans to continue developing and refining this RPG
framework. The goal is to elevate it to a professional, commercial-level product that
can be sold on the Unreal Engine Marketplace. This will involve addressing the
remaining issues, adding new features, and ensuring the framework meets high
standards of quality and usability. As an indie developer, I plan to work on this
project in my free time, with the aim of creating a comprehensive and polished RPG

development tool.

86

Application of Program-Specific Skills and Knowledge

The successful completion of this project was supported by a combination of

skills and knowledge gained from various sources:

e Official Documentation: Utilized Unreal Engine's official documentation to
understand and implement key features.

e Community Forums: Engaged with community forums and online discussions to
solve problems and gather insights.

e YouTube Tutorials: Followed numerous YouTube tutorials to learn best practices

and advanced techniques in Unreal Engine.

In summary, this project has been a significant learning experience, providing
valuable insights into game development and the use of Unreal Engine 5. The
accomplishments, coupled with the identified areas for improvement, set a solid
foundation for future development and professional growth in the field of game

development.

87

